
I

Stanford Department of Computer Scienoe August 1980
Report No. STAN-CS-80-8 E

CCOMPUTATIONAL USES OF THE MANIPULATION

OF FORMAL PROOFS

by

Christopher Alan Goad

A-n

Research sponsored by

Advanced Research Projects Agency

*... COMPUTER SCIENCE DEPARTMENT
Stanford University

LL.J

LA-

* 80 10 29 13T
% . .l4





UNCLASSIFI , A

SECURITY CLASSIFICATIOrT)F THIS PAGE (When Data Entered)

19. KEY WORDS IContinued)

20 ABSTRACT (Continued)

Mechanical procedures for the manipulation of formal proofs have played a central role inproof theory for more than fifty years. However, such procedures have not been widely appliedto computational problems. One reason for this is that work in computer science to do with

formal proof systems has emphasized tl-,. use of formal proofs as evidence - as tools for
automatically establishing the truth of propositions. As a consequence of this emphasis, the
problem for mchanizing the construction of proofs has received much attention, whereas the
manipulation of proofs - that is, the conersion of one form of evidence into another - has not.

However, formal proofs can serve purposes other than the presentation of evidence. In
particular, a formal proof of a proposition having the form, "for each x there is a y such that the
relation R holds between x and y" provides, under the right conditions, a method for computing
values of y from values of x. That is, such a proof describes an algorighm A where A satisfies
the specification R in the sense that for each x, R(x,A(x)) holds. Thus formal proof systems can
serve as programming languages - languages for the formal description of algorithms. A proof
which describes an; algorithm may be executed" by use of any of a variety of procedures
developed in proof theory.

A proof differs from more conventional descriptions of the same algorithm in that it
formalizes additional information about the algorithm beyond that formalized in the
conventional description. This information expands the class of transformations on the
algorithm which are amenabel to automation. For example, there is a class of "pruning"
transformations which improve the computational efficiency of a natural deduction proof
regarded as a program by removing unneeded case analyses. These transforations make essential
use of dependency information which finds formal expression in a proof, but not in a
conventional program. Pruning is particularly useful for removing redundancies which arise
when a general purpose algorithm is adapted to a special situation by symbolic execution.

This thesis concerns (Tcomputational uses of the additional information contained in proofs,

and (0 efficient methods for the representation and transformation of proofs. An extended
lambda-calculus is presented which allows compact expression of the computationally significant
part of the information contained in proofs. Terms of the calculus preserve dependency data.
but can be efficiently executed by an interpreter of the kind used for lambda-calculus based
languages such as LISP. The calculus has been implemented on the Stanford Artificial
Intelligence Laboratory PDP.10 computer. Results of experiments on the use of pruning
transformations in the specialization of a bin.packing algorithm are reported.

DD JAN 731473, UNCLASSIFIED
EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE IWhen, Date Enteved)

IA -A-



Stanford Department of Computer Soienoe August 1980
Report No. STAN-CS-80-829

COMPUTATIONAL USES OF THE MANIPULATION
OF FORMAL PROOFS

by

Christopher Alan Goad

ABSTRACT

Mechanical procedures for the manipulation of formal proofs have played a central role in
proof theory for more than fifty years. However, such procedures have not been widely applied
to computational problems. One reason for this is that work in computer science to do with
formal proof systems has emphasized the use of formal proofs as evidence - as tools for
automatically establishing the truth of propositions. As a consequence of this emphasis, the
problem for mchanizlng the construction of proofs has received much attention, whereas the
manipulation of proofs - that is, the conersion of one form of evidence into another - has not.

However, formal proofs can serve purposes other than the presentation of evidence. In
particular, a formal proof of a proposition having the form, "for each x there is a y such that the
relation R holds between x and y" provides, under the right conditions, a method for computing
values of y from values of x. That is, such a proof describes an algorighm A where A satisfies
the specification R in the sense that for each x, R(xA(x)) holds. Thus formal proof systems can
serve as programming languages - languages for the formal description of algorithms. A proof

ii which describes an algorithm may be "executed" by use of any of a variety of procedures
developed in proof theory.

A proof differs from more conventional descriptions of the same algorithm in that it
formalizes additional Information about the algorithm beyond that formalized in theconventional description. This information expands the class of transformations on the
algorithm which are amenabel to automation. For example, there is a class of "pruning"1transformations which improve the computational efficiency of a natural deduction proof
regarded as a program by removing unneeded case analyses. These transforations make essential
use of dependency information which finds formal expression in a proof, but not in a
conventional program. Pruning is particularly useful for removing redundancies which arise
when a general purpose algorithm is adapted to a special situation by symbolic execution.

This thesis concerns (I) computational uses of the additional Information contained in proofs,
and (2) efficient methods for the representation and transformation of proofs. An extended
lambda-calculus is presented which allows compact expression of the computationally significant

I



part of the Information contained in proofs. Tam of the calculus preserve dependency data.
but can be efficiently executed by an interpreter of the kind used for lambda-calculus based
languages such as LISP. The calculus has been implemented on the Stanford Artificial
Intelligence Laboratory PDP-10 computer. Rtesults of experiments on the use of pruing
transformations In the specialization of a bin-packing algorithm ane reported.

This thesis was submitted to the Department of Comp/,uter Science and the Committee on
Graduate Studies of Stanford University in partial fulfllment of the requirements for the degree of
Doctor of PAliosoph 2 .

This research was supported by the Advanced Research Proects Agency of the Department of
Defense under ARPA Order No. 2494, Contract MDA9O)-8O.C-0102. The Vies and conclusions
contained in this document art those of the authors and should not be Interpreted as necessarily
representing the official policies, either expressed or implied, of Stanford University. Or an, agency
of the UI. S. Government.

0 Copyright 1980

by

Christopher Alan Goad

lo



t

to my parents

Walter B. Goad

and

Maxine S. Goad

NTIS ".:

£2'C T2

ti C

4' I lii

~ - a -- A



Acknowledgements

I wish to thank my adviser, Professor Kreisel, for the help and guidance which he has

given me. Kreisel introduced me to proof theory, and later persuaded me to experiment with

the manipulation of proofs by computer. Throughout the preparation of this dissertation,

Kreisel provided ideas, criticisms, and encouragement which were of great value to me. His

help in the writing phase was extensive; the dissertation as it now stands incorporates a large

number of Kreisel's detailed suggestions concerning organization and style. More generally, I
wish to thank Krciscl for demonstrating by his example that precise thought is possible about

matters which have not yet received a technical formulation, and that there is no need to cast

away one's ordinary judgement when in the presence of a technical definition.

I would not have studied proof theory, and certainly would not have undertaken the work

described in this thesis, had it not been for the influence and help of Professor John

McCarthy, and of Dr. Richard Wcyhrauch. I originally developed an interest in applications

of logic to computing while working on the FOL project at the Stanford Artificial Intelligence
Laboratory under their supervision. Professor McCarthy made it possible for me to pursue

this interest by continuing to support me as member of the Stanford Artificial Intelligence
Project while the work described in this thesis was in progress. I am very grateful for that

support and also for the encouragement which Professor McCarthy has given me throughout
my stay at Stanford. I wish to thank Dr. Wcyhrauch for the many useful and enjoyable

discussions which I have had with him over the past five years. I am grateful to both
Proftssor McCarthy and Dr. Wcyhrauch for serving on my reading committee.

' The Stanford Artificial Intelligence Laboratory provided an ideal environment for doing

research - both in terms of computing resources and intellectual stimulation. In addition, it

was a very nice place to work (this was particularly true when it had a separate physical
existence in the D.C. Power building in the hills above Stanford). I wish to thank everyone

associated with the laboratory.

I wish to thank my wife Elspeth -not for any influence she has had on the content of the

I: thesis, but rather for her effect on the happiness of its author.

Finally, I wish to thank IBM corporation for the graduate fellowship which supported my
studies during the 1977-78 academic year.

'[his text of this thesis was prepared on an Alto computer donated to the Stanford

Computer Science Department by Xerox corporation.

iv

it- - U



Abstract

Mechanical procedures for the manipulation of formal proofs have played a central role
in proof theory for more than fifty years. However, such procedures have not been widely

applied to computational problems. One reason for this is that work in computer science to

do with formal proof systems has emphasized the use of formal proofs as evidence - as tools
for automatically establishing the truth of propositions. As a consequence of this emphasis,
the problem of mechanizing the construction of proofs has received much attention, whereas

the manipulation of proofs - that is, the conversion of one form of evidence into another - has
not.

I
However, formal proofs can serve purposes other than the presentation of evidence. In

particular, a formal proof of a proposition having the form, "for each x there is a y such that

the relation R holds between x and y" provides, under the right conditions, a metbld for
computing values of y from values of x. That is, such a proof describes an algorithm A where
A satisfies the specification R in the sense that for each x, R(x,A(x)) holds. Thus formal proof

systems can serve as programming languages - languages for the formal description of
algorithms. A proof which describes an algorithm may be "executed" by use of any of a
variety of procedures developed in proof theory.

A proof differs from more conventional descriptions of the same algorithm in that it

formalizes additional information about the algorithm beyond that formalized in the

conventional description. This information expands the class of transformations on the
algorithm which are amenable to automation. For example, there is a class of "pruning"
transformations which improve the computational efficiency of a natural deduction proof

regarded as a program by removing unneeded case analyses. These transformations make
essential use of dependency information which finds formal expression in a proof, but not in a

conventional program. Pruning is particularly usefil for removing redundancies which arise* f when a general purpose algorithm is adapted to a special situation by symbolic execution.

iis thesis concerns (1) computational uses of the additional information contained in

proofs, and (2) efficient methods for the representation and transformation of proofs. An
extended lambda-calculus is presented which allows compact expression of the computationally
significant part of the information contained in proofs. Terms of the calculus preserve

dependency data, but can be efficiently executed by an interpreter of the kind used for

lambda-calculus based languages such as LISP. The calculus has been implemented on the
Stantbrd Artificial Intelligence Laboratory PDP-10 computer. Results of experiments on the
use of pruning transformations in the specialization of a bin-packing algorithm are reported.

v

.4__ _

S- ____"



CONTENTS

Chapter 1 Introduction .......................................................... 1

Chapter 2 Normalization and Pruning of Natural Deduction Proofs ..................... 8

2.1 Natural deduction ....................................... 8

2.2 Normalization .......... ......................................... 14
2.3 Computing using proof normalization .................................. 15

2.4 Proof normalization ................................................. 17

2.5 Proof procedures. ...................................... .19
2.6 Reductions on terms of L. .................................. 20

2.7 Pruning ............................................................ 21
2.8 An exam ple ......................................................... 22

. 2.9 Summary: conditions for the computational usefulness of proofs ........... 26

Chapter 3 Efficient Implementation of Operations on Proofs ........................... 29

3.1 Natural deduction and the typed A-calculus .............................. 29
3.2 The p-calculus ...................................................... 34

3.3 Substitution ........................................................ 43

3.4 Recursive constructions ............................................... 44
3.5 Operations on constructions ........................................... 47

- 3.6 Results about constructions ........................................... 50

3.7 Another reduction rule ................................................ 55

3.8 .ffects of pruning on efficiency ........................................ 56

Chapter 4 Specialization of a Bin-packing Algorithm ................................. 63

4.1 The implemcntation ................................................. 65

4.2 The proof .......................................................... 67
4.3 Reduction rules for terms of L0 ...................................... 77

4.4 Results ............................................................ 77
4.4.1 P-term s ....................................................... 78
4.4.2 Two small experiments .......................................... 80

4.4.3 An algorithm for packing six blocks into three bins ................... 88
4.4.4 Table of other results ............................................ 89

4.5 Sum m ary ........................................................... 92

7. vi

S .-.....

Il-- - - ____A



Chapter 5 Other Applications .............................................. 93

5.1 Automatic proof construction .................................... 93
5.2 Analysis of change............................................ 98

Appendix A Comparison to E xtraction Methods from Proof Theory................. 101

A.1 Modified realizability and recursive realizability ..................... 103
A.2 The Dialectica interpretation ................................... 107

Appendix B Content and Form in Proof Manipulation - An Example ............... 110

B.1 Normalization in successor arithmetic............................. III
B.2 Pruning in successor arithmetic.................................. 116

Bibliography.......................................................... 120

vii



Chapter I

Introduction

"'e most obvious purpose of a proof is to convince - to provide compelling evidence for

the truth of a proposition. A formal proof provides evidence of a kind that can be

mechanically recognized, and it is in the capacity of evidence that formal proofs have most

often been used in computation, as for example in automatic theorem proving and in

automatic program verification of the usual kind.

As a consequence of the emphasis on the use of proofs as evidence, only two of the

various operations which people commonly perform on informal proofs have played a

significant role in computations involving f,.mal proofs. These operations are the

construction of proofs, and the checking or recognition of proofs. Operations which involve

the actual manipulation of existing proofs, as opposed to the manipulation of formulas, are

not much used.

However, mechanical procedures for proof manipulation have played a central role in the

subfield of mathematical logic known as proof theory for more than fifty years. This thesis

concerns applications of proof theoretic methods to computational problems. In particular,

our subject matter is the use of formal proofs for the description of algorithms, and the

transformations on algorithms which are made possible by this mode of description. Thus the

work differs from most work in computer science to do with formal proofs both in the use to
which proofs are put, and in the emphasis placed on the manipulation - in contrast to the

construction - of proofs.

41 'The manner in which proofs may be used to express algorithms is as follows. Suppose

that one has a proof that an object with given properties exists. Then the proof can

sometimes be used to discover the identity of a particular object with those properties. If

restrictions are made on the forms of inference used, then it is possible to guarantee that the

proof will (in one sense or another) provide this additional information. For example, a

consrucltive proof of 3xo(x) always "provides" a value v with 9)(v) in the sense of indicating a

method for coniputing v; the computation may o may not be feasible in practice However,

the restriction to constructivity is too strong. mor one nthig, a proof of 3xp(x) may exhibit a

valte v which satisfies q7, but show that q?(v) holds by non-constructive methods. Also, if one

restricts the complexity of q) (for example, if qp is a quantifier free formula of first order

aridimctic), then any classical proof of 3xq)(x) will provide a realization in the same sense and



by the same formal methods as a constructive proof. (By a "realization" of an existential

statement 3xq)(x) is meant simply a value which satisfies the predicate q).)

If an existence proof is given in a formal way - in a way which makes it suitable for

mechanical manipulation - then one might hope to mechanize the passage from the proof to
the value realizing the existential statement. Work in proof theory has shown that the

extraction of realizations from proofs can in fact Ie mechanized for a variety of formal

systems and in a variety of ways. For example, Prawitz's normalization procedure may be

used to transform a natural deduction proof of an existential formula into a direct proof of the

same formula which will - under rather general conditions - explicitly mention a realization.

Now, if one has a proof of a formula of the form Vx'yqp(xy), the methods from proof

theory mentioned just above can evidently be used to compute a function f with Vxcp(xfqx)).

To do this, simply apply the general result Vx3yq)(x,y) to the input value, and then use

normalization (or whatever method one has in hand) to extract a realization. Thus a proof of

a formula Vx3yqp(x,y) serves the rolc of a program which computes a function satisfying the

"specification" 9).

Given that proofs can be used as programs, what is the interest of this fact for computer

science and for practical compu, ting? One answer is as follows.

Existing programming languages are for the most part designed with cconomy of

expression in mind: a program in such a language formalizes exactly the information needed

for carrying out the task at hand. A proof, on the other hand, formalizes a great deal of

information which is not essential for the simple execution of a computation - such as a

description of the task being performed, a verification of the method, and an account of the

dependencies between facts involved in the coml)Utation. The additional information

contained in proofs is useful in the transformation of computing methods - for example in

adapting methods to new situations. This should not he surprising, since one expects that the

data relevant to the transformation of algorithms will be difTerent and more extensive than the

data needed for simple execution.

We shall be concerned with a particular set of transformations on algorithms - called the

pruning transfornations". These transformations remove redundant chunks of computation

by maiking use of a kind of dependency in formation which does not appear in ordinary

progranms. [or the niost part, the redundancies removed by pruning are not to be found in

proofs generated by people. Thus the prutning transformations will not be of much use when

applied to algorithms as originally presented. lowever, proofs which result from automatic

processes tend to include such redundancies.P 2

iown
__ -:~~ 4 a



For example, suppose that one has an algorithm A(x) which is to be used in a situation
where it is known in advance that all inputs will have a special form given by the term
t(Y .... Yd) "lhen A may be automatically adapted to perform efficiently in this special
situation by symbolically executing the code for A on the term t, and then applying
optimizing transformations to the result. (Ershov[19771 and Sandewall[lRckeman, Haraldsson,
Oskarsson, and Sandewall, 19761, among others, have studied this method of specialization as

it applics to ordinar) programs.) If A is expressed by a proof I-, then the result o.
symbolically executing 1- on the term t will often contain redundancies of the kind removed
by pruning even if n as originally given contained no such redundancies. Thus, the
effectiveness of automatic specialization can be increased by adding pruning to the arsenal of
optimizations used in de course of specialization.

As they stand, the standard methods of proof theory are not adequate for carrying out the
specialization of algorithms in a feasibly efficient way. However, we have devised methods for
the exec,.tion and pruning of proofs which overcome this problem. The methods have been
implemented in a proof manipulation system running on the Stanford Artificial Intelligence
I aboratory Pl)P-10 computer. As a preliminary empirical investigation of the usefulness of
pruning in the specialization of algorithms, expermiments on the specialization of a bin-
packing algorithm have been carried out.

The following topics are treated in this thesis, listed in order of decreasing generality.

(I) the use of proofs for the formalization of algorithms,

(2) optimizing transformations on proofs, in particular, the pruning transformations,
(.'

A "(3) efficient implementation of operations on proofs,

(4) the use of pruning in the specialization of algorithms, and

(5) the specialization of a bin-packing algorithm.

The general objective of the work is the development of an improved technology for the

manipulation of algorithms. The use of enriched formal descriptions of algorithms -

specifically, fbirmal proofs - is a means to this end.

, The contents of the thesis are as follows. Chapter 2 serves to introduce some material
mfron proof* theory which will be needed in the course of' the thesis. In particular, we dcfine

the notion of at natural deduction proof systemn, and explain Prawitz's normalization procedure.
Also, we present a very simple example of the use of pruning in specializing algorithms. "lbe

example is intended to illustrate the central features or the pruning transformations in a

L 3



setting of minimal technical complexity. Chapter 3 describes the methods which we have

devised for the efficient execution and pruning of proofs. In chapter 4, results of the bin-

packing experiments are reported. Chapter 5 sketches additional uses which might be made

of the proof technology described in chapter 3. There are two appendices, each of which is

intended primarily for readers with an interest in traditional proof theory. The first concerns

the relationship between our methods and the functional and realizability interpretations of

Kleene, G6dc:, and Kreiscl. The second appendix presents an example which demonstrates

that the features of proof systems which are of interest for traditional proof theory are

different from those which are most directly relevant to the computational use of proofs.

The remainder of this chapter is devoted to a collection of general remarks about the

work, and to previews of matters which are discussed in detail later on.

o Manipulation vs. construction

It should be emphasized again that the work described in this paper concerns the

automatic manipulation of existing proofs, and not the automatic construction of new proofs.
The bin packing proof used in the experiments was devised "by hand", and was entered by

hand into the proof checking component of the proof manipulation system. If one is able to

automate, fully or partially, the construction of proofs which describe computational methods,

then so much the better. But such matters lie outside the scope of this thesis.

o Differences between proofs used to describe computation anl proofs used as evidence

It is necessary to keep computational considerations explicitly in mind when constructing
proofs which are intended as dcriptions of computation. The best proof of a formula

Vx3yq)(x,y) according to such standard criteria as brevity, elegance or comprehensibility, will
often embody a very bad algorithm. Conversely, a proof of Vx3ycp(xy) which formalizes a

good algorithm will generally constitute a rather unnatural way of establishing the simple truth

of the formula. For the purposes of this thesis, proofs are to be regarded as a means of

formulating algorithmic ideas. In writing a proof to be used for solving a computational
problem, one follows the same procedure as is used in writing an ordinary program. Namely,

one first devises a reasonable algorithm, and afterwards formalizes that algorithm (as a prool).

If a proof is given in complete detail, then it includes a justification for the correctness of the
lgorithm which it iwrnalizes. As "ii immediate consequence, Iorimali/ation of algorithms by

prools provides a means for the mechanical verification of algorithms.

I lowever, if one wishes only to implement an algorithm, and not to verify it, then the

proof describing the algorithm need not be fuhy fornmlized. In particulir, proofs of so-called

"-larrop formnuls" can be left out. The I-larrop formulas include for example all formulas

4?4

I

Ma W

%-M



which lack occurences of tile positive logical symbols V and 3. Any proof of a Harrop

formula may be omitted without destroying the computational usefulness of a proof in which
that axiom appears.

Such "non-computational" formulas do not even need to be true. A proof which uses

incorrect Flarrop fomulas as axioms can be executed and pruned in the same manner as a

proof which is valid throughout. However, the ftincton computed by the incorrect proof may

not satisfy the specification embodied in its end-formula.

A formal proof which is constructed for the purpose of describing an algorithm and

which makes free use of liarrop formulas as axioms will in general contain only a part of the

infonnation needed to establish the truth of its end-formula. Thus the formal proofs which

will concern us here arc not proofs in the ordinary sense at all; they do not supply - and are

not intended to supply - the evidence necessary to verify a proposition. We are bending the

machinery of formal proofs to a different end than that for which it was originally intended,

and so can discard the part of that machinery which is irrelevant to our new purposes.

The role of constnctive methods

We restrict our attention in this thesis to proofs which are built up using constructively

valid inferences. Ilie particular formal proof system uscd is the natural deduction formulation

of first order logic as originally developed by Gcntzen[19691 and later studied by

Prawit/ 19651. To arrive at the constructive (or "intuitionistic") variant of natural deduction

fron the. standard or classical natural deduction system for first order logic , one simply

removes one ol the inference rules, namely the rule which expresses the principle of the

* .excluded middle.

Not, /ir the reader who is unjiuiiliar with intuiioni. tic logic: The approach to the
foundations of mathematics which is known as "intuitionism" or "constructivism" was

originated by Brouwcr. According to this approach, the subject matter of mathematics is not

k, an external world of mathematical objects, but rather the world of mental constructions carried

out by mathematicians. This point of view leads to a reinterpretation of the meanings of the

logical symbols, and to restrictions on the modes of inference which can be employed.

I Icyting and later Gentzen developed formal systems for representing contructive reasoning.

It is not our intention here to give an exposition of intuitionism as a philosophical standpoint.

the interested reader is referred to van )alen [19731.

, We have chosen to use the the constructive instead of the standard system not because of

f any distrust of classical reasoning, nor because non-constructive proofs cannot be used to
describe algorithms. Indeed, the proofs which we use to describe algorithms will in any case

4 t S

.4 .



make use of complicated axioms (as explained in the last section), and there is no reason

whatever to require that these axioms be constructively valid. Thus the formulas which

appear in our proofs will not in general be constructively valid; it is only the inference rules

used for manipulating those formulas which must be constructive. But further, even proofs

which make essential use of non-constructive inferences in connection with non-Harrop

formulas can be executed by methods similar to those used for constructive proofs. In

particular, many of the methods of proof theory, including Prawitz's normalization method,

apply to classical proofs as well as to constructive proofs, and under certain conditions are

guaranteed to provide the same kind of information. For example, normalization may be

used to execute any (classical) proof of a formula Vx3y97(xy) of arithmetic whose matrix q is

quantifier free; a value for y will always be supplied by normalization when any input value

for x is given. Thus the distinction between a proof which describes an algorithm and a proof

which does not is quite different from the distinction between a constructive and a non-

constructive proof.

However, the process of fleshing out an algorithm into a proof from (possibly complex)

Harrop axioms appears to lead naturally to a proof in which only constructive inferences are

used. This at least is our experience so far. So for the moment, there is no nced to look at

classical systems, and by the restriction to constructive systems we are able to avoid a certain

amount of technical complication.

0 The p-calculus

Traditional proof theory provides two kinds of methods for the execution of proofs.

First, there are the normalization and cut-elimination methods which carry out the

computation indicated by a proof by transformation of the proof itself. Second, there are the

4 functional and realizability interpretations which extract "code" of one kind or another from

proofs, it is then the code which is executed, and not the proof itself.

Each of these two approaches is inadequate for the purposes which we have in mind here.

,T 'he normalization methods arc unsatisfactory because they are too slow. On the other hand,

the methods which involve extraction of code from proofs retain only the infonnation which is

needed for the computation immediately at hand; the additional data needed for the pruning

transformations is lost. This would not be a problem if we only intended to apply pruning

transformations to proofs as they are originally given, I lowever, the use of proof's for tile

*specialization of algorithms requires that the additional data be preserved by symbolic

execution.

Our solution to these difficulties involves the use of an extended X-calculus. which we

shall refer to as the p-calculus. The p-calculus is designed to provide expression for just that

6



informaton contained in natural deduction proofs which is needed for execution and for the
prining operations. P-calculus terms can be extracted from ordinary natural deduction proofs
in a straight-forward manner, and executed efficiently by an interpreter of the kind used for
X-calculus based languages such as LISP and SCHEME. Chapter 3 describes the p-calculus in
detail.

Rehlued wck in computer science

The work described in this thesis is related in a general way to work in a variety of areas
of computer science. In particular, there arc clear connections to code optimization, program
synthesis and transformation, and to dependency directed reasoning in the sense of [London
19781 and [Stallman & Sussman 19771. The relation between the current work and the topics
just mentioned is discussed in chapter 5. In what follows, we give a brief catalog of work
within computer science which is directly concerned with the extraction of information from
proofts.

Green [19691 considered the problem of extracting information from resolution proofs.
llishop[19701, Constable19711, and Martin-l.61[19791 - among others - have suggested using
constructive proof systems as programming languages. Goto[19791 has implemented Gidel's
I)ialectiva interpretation for intuitionistic first-order arithmetic. Takasu 119781 discusses
computational uses of proofs in the same system by use of Gentzen's 119691 cut-elimination
procedure. Miglioli and Ornaghi 119801 describe a method for executing sequent calculus
proofs " hich differs from cut-elimination. In IManna and Waldinger, 19791, a method for
autOMICic sYnthesis of programs is described which involves the simultaneot construction of a
natural dedtction proof of the goal formula and of a program which realizes that formula (in
a suitable sense). Bates 119791 develops a constructi e "refinement logic", and shows how
prograins can be extracted from proofs of this logic. A Prolog program [Kowalski 19741 is a
collection of axioms in I lon clause form. An execution or a Prolog program consists of a
search for a proof in a restricted resolution system. The output is a term extracted from the

proof. In practice, the output term is constructed during the search for the proof. (See
chapter 5 fb" further comments concerning die work of Rates and of Kowalski.)

It shouild be emphasized that the aims of the work described just above differ
fundamentally from the aims of the work presented in Otis thesis. In the fonier, formal
proofs serve as vessels from Which computational contents of a standard kind are extracted.

SIn contrast, our concern is to exploit the diffi'rcnces between proofs and conventional

dc riptions o compttation. Specifically, we will show how new operations on algorithms can
be mnechanized by making use of the additional information to be found in proofs.

7



Chiapter 2

Normalizat ion and Pruning of Natural Deduction Proofs

In this chapter. we describe the natuiral deduction formalism (section 2.1), and the

normalization and pruning operationls (sections 2.2. 2.7). A very simnple examplc of the use of
pruning in specializing algorithms is given in section 2.8. Our presentation of natural
deduction and of niormialization follows standard lines (eg Prawitz119651). except in the

treatment of "lemimas" (section 2.5). Certain formal details concerning normalization arc left
out, and all results are stated without proof. Also, no treatntt of principles of induction is

given until Chapter 3, where normalization and pnining arc described in formial dctail as they
apply to a coinputationally efficient representation of natural deduction proof's.

yse er:ms ofntrlddcinwr rgnlydeveloped lby (ientzenjI969j. The notation

di-tricpresetiono i.tr euto and of at normiali/ation proceduire for natural

II htfollows, we describe the natural deduction formalismi for intilitioliistic first order

logic. T[be fiormalism is defined with it first order language I. as at parameter: the class of
1,0rmulas which may appear in at proof is given by IL. It should he noted that natural

deduction diff'er% fromi other proof' systems ti~r iiiitionislic first order logic in the kind of

structure which it pros ides for representing proos, and not, for example, in the set of
theorems % hich it proves. It is possible to translate back and forth between fproof's of natural
deduiction and proofs of, say. thc Sequent calculuis in a mechanical way. T he advantages of
natural dcdluction are the advantages of at good data structure - a data structure- which

represents human reasoning in at comparatively direct way, and to which the various

operations in which we are intcrested can be easily applied.

T[he notionl of' at first order laingiiage is defined in the standard manner, ats fbollows. We

start with (1) an (infinite) list ot variable symbols. v,v 1 .  (2) at list of constant symbols
c1 ,c2. . . . 0.) at list oIf' veLtion symbols R t*R .and (4) at list of function symbols
f1 ,7 Th. . . . le anitics of the relation symbols and funictioai symbols arc to be speci fied ats
part of' the definiition of' I.. T[ermis of 1 . are built uip from vtriaiblc anid constant symbols by
meians of function application ini the standard manner. Tlhe set of' formtulas (of I, is defined

by the flollowig iniductive clauses. (1) TIhe propositional constant l"AI l is a formula.

S 8



(2) if t1, tn are terms, and R is a relation symbol of arity n then R(t.. t. ) is a

formula. (3) If P.Q are formulas, and x is a variable, then (a) lPAQ, (b) PVQ, (c) P D Q,

(d) 3xP are formulas. It is convenient for our purposes to allow universal quantification to
apply to a vector of variables; thus we have (e) Vx1, ... xnP is a formula for any formula P
and vector of distinct variables x,. ... xn. (Vx1. .I xnP is noi an abbreviation for
Vx1 Vx2 * ' * VxnP. We shall sometimes use underlined characters to refer to vectors - for
example x will refer to a vector of variables, and t to a vector of terms. We regard negation

as a defined notion: specifically, IP is to be read as an abbreviation for the formula
P D IAI.S. The notion of a free occurence of a variable in a formula is defined in the

standard manner.

A natural deduction proof takes the form of a tree whose nodes are labeled by formulas.
by the names of inference rules, and by other information. This tree represents the history of
a logical argument - in particular it records a series of applications of inference rules which

lead from tie hypotheses of the argument (reoresented by leaf nodes of the tree) to its

conchsi(n (represented by the root).

l"ihc leaves of a natural deduction proof tree are of two kinds: axioms and assumptions.
The truitll of the conclusion of a natural deduction proof will in general depend on the truth
of the formulas which appear as axiom leaves, but may not depend on the truth of all of the
linrmulas which appear as assumption leaves. The reason for this is that the inference rules

of nati.il deduction can have the effect of "discharging assumptions". For example, consider
the implication introduiction rule:

(A)B

ADII

'I his rule specifies that ADII can be inferred from I. In addition, the rule indicates that

the et of assumptions upon which ADH depends is to be computed by removing the formula
A frotm the set of assumptions on which II depends. (The appearance of A in parentheses is

S t'what specifics that the assumption A is to be discharged. ) Informally, the rule states that if B

iF can he proved using the assumption A, then ADDI can be concluded, and this conclusion does
not depend on A being true. Thus the inference rules of natural deduction operate not just
on end-formulas of the su proofs to which they are applied, but on additional information

contained in those subproofs. nanely, sets Of aSsuiilptiOns.

In general, the formula attached to any node in a natural deduction proof tree depends
on soile (possibly empty) subcollection of the formulas attached to assumption leaves of the

subtrec rooted at that node. 'Ilie nemhcrs of' this subcollection are referred to as the "open

assumiptions" of the node. The inference rules specify what conclusions may be drawn from

4 9



premises of a given form, and in addition indicate how the open assumptions of the

conclusion arc computed from the open assumptions of the premises.

The set of open assumptions of each node in a proof trce is computed recursively as

follows. First of all, the set of open assumptions of a leaf node is the empty set if the node

is an axiom, and the singleton set containing the node itself if the node is an assumption. ihe

set of open assumptions of any non-leaf node can b.- computed from open assumptions of its

sons simply by appying the inference rule associated with that node.

Note that we use the phrase "open assumptions" to refer to a set of nodes on a proof

tree, and not to the set of formulas attached to those nodes.

Each of the inference rules of natural deduction has the following form:

(A,) (A2)  ... (An)
P1 P2 ... Pn

C

In the above, some (or all) of the Pi may lack associated appearances of parenthesized
formulas (Ai). The meaning of such a rule is that a conclusion of form C can be derived

from premise formulas of forms P, . . . Pn. 'lhe set of open assumptions of fie conclusion is

computed as follows. Let Si be tile set of open assumptions of premise Pi. For each i,
remove from Si all nodes whose attached formula is A i, and call the result Si'. (If there is no
Ai associated with Pi, then let Si' = Si.) The set of open assumptions of the conclusion is

just the union of tie Si'. The Ai are called the assumptions discharged by the rule.

Each of the inference riles of natural deduction is devoted to the treatment of a
particular logical symbol or quantifier. Conversely, for each logical symbol and quantifier,

there is a rule (or pair of rules) which has the effect of introducing that symbol, and another
rule (or pair of niles) which has the effect of eliminating that symbol. The rules are
designated by tie symbol which they treat, and by their function, whether it be introduction

or elimination. For example, the two rules which treat implication are referred to as the "D-
introduction rule" and the "D-elimination rule" ("Di" and "Di"' for short).

'The inference rules of natural deduction are given below. We use the following notation

for substitution: A,,,-,, or Aix -t denotes the result of replacing all occturences of the variable
x by the term t in the formula A. If x and t are vectors of" variables of the same length, then

A[x-tl denotes the result of substituting the terms t for tie variables x in parallcl. As usual,

substitution may require that bound variables be renamed.

L 10

4 _



A-introduction:

A B

AAB

A-elimination:

AA13 AAB

A B

V-introduction:

A B

AVII AVB

V-elimination:

(A) (B)
AVII C C

C

D-intrvdsction:

(A)

Z)D-clinmination:

A ADB

4 V-introduction:

A

VxA condition: none of the variables x may appear free in any
* " Lassumption on which the premise A depends.

III

4A.



V-elimination:

VxA

A -_ where t is any vector of terms of L

3-introduction:

A[x-tl

3xA where t is any term of L

3-elimination:

3xA

C conditions: the variable x may not appear free in A, nor in C, nor in
any assumption on which the second premise C depends
other than the assumption A.

The above rules are essentially Prawitz's rules for the intuitionistic predicate calculus.
However, we have left Out the FALSFE-elimination rule:

FALSE-elimination:

FALSE

A

'The effect of this rule can be obtained by the use of axioms of the form FALSF. D A for
atomic formulas A. (Any formula can be derived from FALSE by means of such axioms and

the use of introduction rules. For example, AVB with A atomic may be derived from
FALSE by using the axiom FALSE D A, and then applying V-introduction.) As will be seen

(section 2.3), we shall allow such "false-elimination" axioms to appear in proofs used for
computation: in fact, the restriction that the consequent A be atomic may be weakened - A

may be any "llarrop" formula (section 2.3).

44

i 12

4 ___

, - i -;--



lbe classical first order predicate calculus is arrived at by adding the following inference

rule expressing the principle of the excluded middle (recall that lA abbreviates A D FALSE).

"-elimination:

(1A)
FALSE

A

Notice that free variables which appear in axioms are in effect universally quantified; the

same conclusions can be drawn from all axiom A(x 1, . . . xn) in which the xi appear free as

from the axiom VxI x2 ... xn A(x1 .... x,).

The V-introduction and 3-elimination inferences bind variables in a proof in the same

sense that the quantifiers V and 3 bind variables in a formula. Specifically, the variables x in

the above presentation of tile V-introduction rule are to be regarded as bound wherever they

occur in the proof of the premise of the rule. Similarly, the variable x in the 3-introauct0n

rule is to be regarded as bound in the proof of the rule's second premise. In both formulas

and proofs, a bound variable serves as a local name which is meaningful only inside the scope

of the binding: such bound variables may be renamed at will without changing the meaning

of a foIrmula or proof (as long as conflicts with other variable names are avoided). A precise

definition of the notion of a bound variable in a proof will be given in chapter 3.

By a "closed proor' we mean a proof in which no variables occur free, and in which the

cnd-olrmula depends on no assumption. lormulas which are not closed may appear in a

closed proof, as long as the free variables in those formulas are bound by one of the inference

A rules V-introduction and 3-elimination.

The I1ollowing is a simple example of a natural deduCtioln Proof. The proof makes use of

no axioms. Assumption leaves of the proof tree appear in brackets. The reader can verify

that each of the assumptions is discharged in the course of the proof. 'lhe result is an

asstimption free derivation of the predicate caluclus theorem,

V)(l(y)VQ(y)) D Vx(Q(x)VP(x)).

1 Vy(P(y)VQ(y)) [P(X)l [Q(x)l
VF VI-- VI

P(x)VQ(x) Q(x)VP(x) Q(x)VP(x)

Q(x)VP(x)

Vx(Q(x)V P(x))

Vy(P(y)VQ(y)) D Vx(Q(x)VP(x))

13

" [ " " , ... . . . . . . . . .. . . . . ,.. . . . .. . . . . .- . ., , ,_ . .. .,_ _. . ,. , L . . . ..

I-I-l I ...... -.. . . . . .. I_



2.2 Normalization

In the course of this thesis we will have occasion to consider several procedures for the
step-by-step reduction of objects to a "normal" form. These "normalization" procedures share

certain general features. This section introduces the basic notions and terminology which

apply to normalization in each of its various forms.

The two standard normalization procedures which are most directly relevant to our

current purposes are the proof normalization procedure of Prawitz, and the normalization
procedure for Church's[1941] X-calculus. The methods described in chapter 3 make essential
use of the close connection between these two procedures.

Let T be a class of terms (of whatever kind). A normalization procedure for T is (partly)
given by a collection R of "small" transformations, called "reduction rules". The

normalization of a term t consists of repeated application of the reduction rules until no
further application of a rule is possible. The result of this process (if it terminates) is called a
"normal form of C", and is designated by ItI.

More precisely given a term t and a reduction rule r, r may or may not be applicable to t.
If r is applicable to t, it may he applicable in various ways (in the case of proofs and A-terms,

the reduction rule may be applicable at several places within the proof or term). 'The result of
applying a reduction rule in a particular way to a term t is a modified term t'. A temi to
which no reduction rule is applicable is said to be in normal tlorm. A pair (I,R> where T is a

set of terms and R a set of redution rules on those terms will be referred to as a "reduction
system".

We use tile notation tI --+t, to signify that t2 results from an application of one of tile
reduction rules to t1. Any proccdume for selecting a particular order (and "way") in which
reductions are to be applied tot a term is called a "normalization )rocedure". Thus a F

normali/ation procedure., when applied to any particular term t generates a (possibly infinite)
sequence of terms t0,tlt ...where ti + is arrived at from t, by the application of one of the

reduction rules. A theorcml which states that a given normalization procedure always yields a
finite sequence of terms ti ,t2, . ' t,, where t, is in normal firnm, regardless of' the initial
term t, is reFerred to as a "norniali/ation theorcm". Other standard termino)logy concerning

nornalh/atiol is is fiolh)ws.

A system <TR> has the "termination" property if every sequence oif reductions t1 ,t2 ... is

fin ite.

We use tile notation t - t, to sigiil'y that t' results from t by sonic finite sequence

t--,,tl- t -- . t of applications o1" reduction rules. A system <'I',R> has the "uniqueness

14

-h I0 I 0



property" if every sequence of reductions of a term to a normal form yields the same result.

That is, <T,R> has the uniqueness property if, whenever t -* t, and t -* t2, and t, and t2
are both normal, then tI ;, t2.

A system which has both the tennination and the uniqueness properties is said to have
the "strong normalization" property. Evidently, if a system has the strong normalization

property, then the normal form Itl of each term exists and is unique.

Each of the computation procedures to be considered in the course of this thesis takes the

form of a normalization procedure of one kind or another. Of course, normalization

procedures need not be implemented in a literal minded way. Normalization for X-calculus

based languages can be sped ip by using environments instead of literal substitution for

carrying out A-conversions. The implemented p-calculus interpreter on which the

experiments were carried out makes use of this idea.

2.3 Computing using proof normalization

This section concerns the manner in which proof normalization may be used for

computing, and not the internal workings of the normalization procedure itself.

'Ihe usC'ulICss of proof nor'rtlization roi computational purposes derives from the special

properties possessed by proofls which are in normal form. Rouglly speaking, tie reductions

used in proof normalization have the effect of removing certain kinds of indirect arguments

from a proot. A normal proof contains none of these indirect forms of argument, and

CotpItlitatiinally useful infornation can be read off a proof which is direct in this sense.

Ividently. some restriction must be made on the axioms which appear in a proof if it is

to he of any compr ational use. The appropriate restriction for our purposes is that all axioms

be "I larrop folrmulas". The Harrop fonnulas are those which do not contain the positive

Slogicil symbols V and 3 except in the hypotheses of implications. More formally, the class of

I laIrrop formulas is defined by the following inductive clauses: (a) atomic formulas are Harrop

formuas, (b) if A and 13 are Ilarrop formulas, then so are AAIB, VxA, (c) if 11 is a 1-larrop
iiulr, then so is A D 13, regardless of the form ot A. A proof which contains only Harrop

formulas as axioms will be referred to as a I larrop proof.

(The notion of a flarrop formula was introduced by I larropI19601. larrop showed that if

A and 3x I(x) are closed formulas, and if A is Ilarrop, then AD3xl(x) is provable in

intuitionistic arithmetic iff 3x(ADIB(x)) is provable in intuitionistic arithmetic. This

generalized the following result of Kreiscll1958j: if AI lack occurences of the positive

, 
;A

t, 1

-, 

,



connectives "V" and "3", and if A, 3xB(x) are closed, then - again - AD)3xB(x) is provable
in intuitionistic arithmetic iff 3x(ADB(x)) is provable in the same system. As it happens, the
examples presented in chapter 4 effectively rely only on Kreisel's result and not on Harrop's
generalization, since all axioms used are intuitionistically equivalent to formulas in which
neither "V" nor "3" appear.)

The following properties of normal proofs make it possible to use normalization to "run"

proofs.

(1) Since each of the reduction rules preserves the end-formula of the proof to which it is
applied, the end-formula of the normal form of a proof will always be the same as the end-
formula of the original proof.

(2) A normal, Harrop proof of an existential formula 3xA(x) has the form:

A(t)
31

3xA(x)

Thus, a normal, Flarrop proof of the existence of an object with a certain property
contains a proof that a particular object has that property, and a tcnn denoting that object can
be easily extracted from the proof.

(3) A normal, Harrop proof of a formula of the form AVI1 has one of the following forms:
H II
A B

AVB AVB

Now, it is evident that normalization allows one to pass mechanically from a Ilarrop
proof of Vx3yA(x,y) and a term t to a term t2 together with a proof of A(t1lt 2). To do this,
one simply applies the theorem Vx3yA(x,y) to the value t, (by use of the V - elimination
rule), and normalizes the resulting proof. By (2) above, the outlput value t2 can be extracted
from the next to last step of the normal proo' Similarly, a closed Flarrop proof of

Vx(A(x)VB(x)) provides a uniform way of deciding which of A,13 holds for any particular
value of x.

*I1
f t 1

4 I -i



2.4 Proof normalization

The reduction rules used in Prawitz's normalization procedure for natural deduction proofs

are given below. The rules may be applied at any position in a proof tree. That is to say, any

piece of the proof tree which matches the template given on the left hand side of a rule may

he replaced by the appropriate instantiation of the right hand side of the rule, and this

replaccment constitutes an application of the rule. Notice that each rule removes -

configuration in which an introduction rulc is followed immediately by an elimination rule.

The following notation is used: fLx-_t denotes the result of replacing all free occurences

of the variables x by the terms t in the proof I. The figure

A

denotes a proof P which has A as its cnd-trmula. The figure

[AI
[12

denotes the result of replacing each open occurencC of the assumption A by the proof n 2

which has A as its end-tbrm ula. In both the substitution of terms hor variables, and the

substitution of proofs rbr assumptions, it may be necessary to change the names of variables

hound by the V-introduction and 3-elimination inferences; in this respect, substitution into

prools is similar to substitution into formulas or into X-expressions.

A-reduction:

J.. It I12

A I
At - IiI

AAB AI: A F -. .

A

A I.A I -. .. i1 2

AAI: It

AII
II

17

- '- -. z z znM ' ~



V-reduction:

fIt
A [Al [BI nt

V - !I2  [13 [A]
AVB C C :1 2

VE C

n,

B [A] [BI
V [ -- 12 13[B

AVB C C 113
VF,- C

C

D-rcduction.:

(A)I12

II fit

n Dl- [A]
A A DB 2

DE 13
B

V-reduction:

11

V1 [ [x4-t]
VxA Alx't

VF -Alx '-t]

3-rcduction:

Ahx+-t_/ [AI
31- - 2 Ax'-tl

3xA C rl 2 l
3F- C

C

The reduction system given by the above reduction ruICs has tile strong normalization

propcrty(l'rawitz19091). We have left out the permutation rules, becausc thcy arc not
necessary for the execution of' proofs.

F18

-M4_



2.5 Proof procedures

L.et A = Vxi(x) be a closed non-Flarrop formula. Suppose that one has a mechanical
procedure y which, when given a vector of closed terms t, supplies a closed Harrop proof Y(o

of' the formula qp(t). Such a procedure will be called a "proof procedure for A". It turns out

that the a'ailability of such a proof procedure makes it possible to execute proofs in which A

is stated as a Icmnia. iat is to say, it is not necess.ry for the purposes of proof execution to

ha~e a particular closed tlarrop proof of a non-l-arrop universal formula Vx)(x_; it is

sufflicient to have a method for generating closed Harrop proofs of each closed instance q(0 of

We require a proof procedure y for Vxcp(x) to supply a proof of q(,t) only under the

condition that t is closed. Nonetheless, it is convenient to allow a proof procedure to supply

(not necessarily closed) proofs of q)(0 for some vectors t of terms which are not closed,

depending on circumstances. Thus we formally define a proofprocedure for Vxq)(x) to be a

mechanical procedure 7 with the following properties. (1) When y is applied to any vector of

terms t, it returns either the atomic message "FAIL", or a Ilarrop proof of Cft). (2) If t is

composed of closed terms, then y() must he a closed proof, and not the message "FAIL".

The tuse of proof procedtres may be integrated into tile normalization process by adding

the tfllo%%iug rule to the class of reduction rules for proofs given above.

Iemuna- redu~ction:

lem11a1: VxqP

condition: y is the proof procedure for Vx1V,

and "y(t)#FAII.

We shall henceforth use the word "lemma" as a technical term which denotes a universal

formula for which a proof procedure has been supplied. The set of lemnlas together with their

associated proof procedures is - like the language I, - a parameter of the definition of the class

of iploof, and of tile class of' norali/.ation reductions. We assume that the proofs generated

by proof' p1fcedUr'Cs do not themnselves make use of lenimas.

The addition of' leImma-reductioil to the set of reduction rules does not interfere with the

strolig normi/ation property. Also, the various properties of normal proofs which were given

in section 2.3 continue to hold if we add the restriction that the normal proofs in question be

4 19

!.4



closed. Since reductions on proofs pass from closed proofs to closed proofs (section 2.9), it
follows that closed proofs continue to have all of the computationally useful properties
remarked on in section 2.3.

In the example to be given in section 2.8. only one lemma is used, namely the lemma Vx

y (x~yVx>y) which states the decidability of numerical inequalities. The proof procedure for
this lemma simply provides the proof

tt:5t
VI

tt_<t 2 V tt>t2

if t1 and t2 are closed and the formula t1 t2 is true, and the proof

tI>t 2

VI
tt_<t 2 V tt>t2

if ti and t2 are closed and the formula t1>t2 is true: if t1 or t2 contains a free variable, then
"FAIL" is returned. Proof procedures for formulas of the form Vx(R(x) V "R(x)) with R
atomic play a role in normalization which corresponds to the role played by primitive

. predicates in programming languages.

2.6 Reductions on terms of 1,

Suppose that one has a reduction system (T,R> for the terms of a first order language I.
Then the reductions R can be incorporated into proof nornialization simply by by allowing
them to be applied at will to terms which appear in the for1nulas of proofs. In such a hybrid
reduction system there is little interaction between the reductions on terms and the reductions
on proofs. If both the reduction system for terms and the reduction system for proofs have
the termination property, then so will the hybrid reduction systen. This holds for the
uniqueness property as well, so long as the proof procedures foir non-Ilarrop formulas

commute with term reductions.

As an example, consider a fo'inulation of first order arithmetic in which terms are built lip
from variables, decimal (or binary) notations for natural numbers. and function symbols for
successor, addition and multiplication. Consider also the reduction system consisting of the
single rule which replaces closed numerical terms by decimal notations for their values. In
computing numerical Functions by means of proof normalization, the use of this term reduction

20
4

t J[ ... . ... -"



rule allows the addition and multiplication of numbers to be carried out by efficient
machinery external to the normalization procedure. In particular, the rule can be implemented

in such a way as to take advantage of the arithmetic hardware possessed by most computers.

Reductions on terms will receive little explicit attention in the rest of this thesis. However,

the presence of a well-behaved reduction system for terms will not affect any of the results
about proof r')rmalization presented in this chapter or in chapter 3. By "well-behaved", we
mean (1) terminating, and (2) value-preserving with respect to the model (if any) currently

tinder consideration Whenever reductions on terms are mentioned, the reader is to assume
that properties (1) and (2) hold.

2.7 Pruning

The pruning operations are as follows.

fit 112 1-13AVI C C => !- 2  if A does not appear as an

VEF- C open assumption in t12.
C

n , [1 2 [13
AVII C C 113 if B does not appear as an

V11, C open assumption in 13.
C

There is also a prUning operation:

3xA C
3F-- H2 if A does not appear as an

C C open assumptioon in 112

for the 3-elimination inference, but it will play no role in the work described in this thesis.
elrnceforth when we speak of a "pruning operation" we mean one of the two pruningK , lc~orations for V-elimination.

21

14__



It should now be clear why the pruning operations are unlikely to be useful when applied

to proofs as originally given by people. The inferences removed by pruning are redundant,

and one does not expect to find them in proofs which have been constructed in a purposeful

way. However, the example given in the next section demonstrates that proofs which result

from simple automatic processes may contain such redundancies: in particular the process of

specializing a proof by nonnalization may introduce redundancies where none had at first

appeared.

The pruning operations may be adjoined to the set of reductions used in normalization.

The resulting reduction system retains the termination property, although the uniqueness

property is lost. This loss of uniqueness is an advantage and not a defect of pruning. Pruning

allows uIs to reduce proofs to a variety of equally satisfactory normal forms, some of which can

be arrived at more quickly than the normal florm which results from normalization without

pruning. Thus, by dropping the uniqueneess requirement, we gain cfticiency.

2.8 An example

The simplest algorithnis to which the pruning operations are usefully applicable are pure

case analysis algorithms - algorithms which can be expressed by "plain" conditional

expressions. In what follows, we present a very small case analysis algorithm which is

nonetheless sufficient to illustrate the main points which we wish to make ,hbout pruning.

These points are: (I) pruning may be used to increase the efficiency of specializations of
algorithms, and (2) conventional descriptions of algorithms do not contain the data necessary

for the improvements in efliciency realized by pruning. Consider, then, the following

algorithm - given as a conditional expression - tbr computing an upper bound for both the

sum and the product of two positive rational numbers x and y:

u(x,y)=if x<l then y+I else (if y_5l then x+l else 2xy)

We will use the bold faced letter u to refer both to the algorithm, considered as an

abstract method which can be formalized in various ways, and to the above concrete

conditional term.

Now, suppose that the value .5 is given for y in advance, and that we wish to optimize u

given this additional information. The best we can do, if supplied only with the conditional

expression as a description of the algorithm, is to symbolically execute the expression on the

arguments x, .5. The result is:

t(x,.5)=if x<l then 1.5 else x F-I

22

VL I iv



As will be seen below, the formalization of this upper bound algorithm as a proof allows
u(x,.5) to be automatically simplified, by use of normalization and pruning, to the expression
x +1. The fact that x + 1 is an upper bound for both x +.5 and .5x does not depend on x
being less than or equal to one; this dependency information is contained in the proof, and
allows the automatic removal of the unnecessary case split according to the size of x. Note that

the pruning optimization has the unusual quality that it modifies the function computed by the
expression to which it is applied. However, pruning is guaranteed to preserve the validity c.

an algorithm for the specification embodied in the end-formula of the proof describing the
algorithm. Also note that no transformation on conventional computational descriptions can
have the same effect as pruning. Conventional descriptions contain information only about

the function to be computed, and not about the purpose of the computation, and therefore
valid transformations on such descriptions must - unlike pruning - preserve extensional

meaning.

'Ilie following natural deduction proof formalizes the upper bound algorithm u. In the
proof and elsewhere l,(x,y.z) is used to abbreviate the formula (z > x+y) A (z > xy).

Leaves of the proof tree which are not surrounded by brackets designate axioms or lemmas.
Three Harrop axioms ("x ID ,(x,y,y + 1), "y < 1D,(x,y,x + 1)", and

"(x>l)A(y>l)D*'(x,y,2xy)") and one lemma Vx y(x<y V y<x), appear in the proof. We
assume that the proof procedure described in section 2.5 above has been provided for the
lemma. Also, reduction rules for numerical terms, which will, for example, reduce 2+1 to 3,
are assumed to be present. (The details of the notation used for rational numbers and of the
reductions which apply to numerical terms are unimportant for the purposes of the current

discussion.) We will use the capital letter U to designate the proof.

I

23

it4S,1 ' - - - -_j_ I'



[x> [y>1l

Al
[yl] y<ID4I'(xyx+l) x>lAy>l (x>1)A(y>1)D4,(xy,2xy)

D DE

*,(x,y,x + 1)
Vxy(x<yVy<x) 4'(x,y,2xy)

VE 31- 31

y lVy>l 3z'I'(x,y,z) 3z'(x,y,z)
VE

3z'(x,y,z)

[x<1] x lqP(x,y,y+1)

DE-
'I,(x.y~y + 1)

Vxy(x<yVy(x)
VE- 31

x<1Vx>l 3z'l(x.y.z)
VE-

":1zP(x~y,z)

Note that we have neglected to universally quantify the variables xy so as to arrive at a
proof in the standard V3 form. [i the current simple context it is more convenient for
purposcs of exposition to leave the quantification implicit, and to specify that input values to
the proof viewed as an algorithm bc substituted for the frcc variablcs. More precisely, in
order to compute an upper bound for the sum and product of two input valucs v and v2 by
means of normalization, v, and v2 are first substituted for x,y throughout the proof U, and
then the proof is normalized.

Normalization of simple case analysis proofs such as U makes use only of the V-reduction

rules (section 2.2) and perhaps of proof procedures for lemmas. In this restricted case,
normalization of proofs corresponds closely to the execution of conditional terms by means of
repeated applications Of the reduction rules:

Cl: (if TRUI" then t1 else t2) t

C2 : (if FAISE then t1 else t2) 2

I2
€, 24



At: R(t.t 2 . .. . TRUE if R is an atomic relation, tt, ..t. are closed
ground terms, and R(t,.t2 . tn) holds

A2: R(tl,t2 . . tn) = FALSF if R is an atomic relation, t,,t2 . ..tn are closed

ground terms, and R(t1 ,t2 ... tn) does not hold

The two V-reduction rules correspond in their effect to C1 and C ,, while proof-procedures
for lemmas of the form Vx1 ,x2 . . .x1 (R(xx 2 . . ) V IR(x],x1  . . .Xd) correspond to

the rules A1 and A2 .

More specifically, the V-reduction rule takes an V-elimination inference

i 12 n -!3

AVII C C
VE-

C

in which the proof 11, of the first premise indicates which one of A and B is true; del:,nding

on whether it is A or It that holds, either the second "branch" 112 or the third "branch" F13 of

the inference is selected. This corresponds to making use of a binary decision between TRU.

and IFAI.SE in a conditional expression to select a branch of the conditional.

As an example, the reader may wish to carry out the normaliiation of U when inputs 2

and .5 are substituted for x and y, respectively. The normalization of the proof will parallel

the normalization of the term

if 2 <1 then .5+1 else (if .5<1 then 2+1 else 2(2)(.5))

with respect to the reduction rules C',C2,A A,.2 given above. '1ibe final result of the
normaIililation will be:

.5(1 .5<1 D '*'(2, .5, 3), i -t- -- -_ _

'I'(2, .5, 3)
31

"A 3z%'(2, .5, z)

The value returned by this proof is "3".

In order to specialize the algorithm expressed by U to the case where y is fixed at .5, .5 is

• $ substituted for y throughout the proof, and the result is normalized. This process yields the

f'ollowing "spec ial ized" proof:

( ' 25



x <- 11  D'(x .5, 1.S) .5<1 .5<1Th1l(x, .5, x+I)

Vxy(x<yVy x) '(x, .5, 1.5) '(x, .5, x+1)
VF 31 31

x<IVx>t 3z*(x, .5, z) 3zP(x, .5, z)VE.

3z',(x, .5, z)

This proof corresponds to the specialized conditional term, "if x<1 then 1.5 else x+1". ,'
further optimization is applicable to the specialized proof which is not applicable to the

conditional term, namely pruning. The second minor premise of the V-elimination inference

in the specialized proof above does not depend on the assumption x>1. It is this fact about the

dependency structure of the computation that the proof U, but not the conditional tern u,

formalizes, and which allows prtning to take place. The result of applying pruniig is:

.5< 1 .5<ID'l'(x, .5, x+1)

'l1(x, .5, x + 1)
31-

3zt'P(x, .5, z)

This represents the same algorithm as the conditional term "x+l".

Note that, if comparison is a very cheap operation, and adding is very expensive, then it

might happen that "x - 1" has an average case efficiency which is worse than "if x< I then 1.5

else x+l". This illustrates the general point that pruting is not glurdttHO'ed to increase

efficiency. lowever, pruning often improves the efficiency of' an algorithm, and alwa's

reduces its size. (Size reduction is an important effect of' pruning in the experiments on bin-

packing: see chapter 4)

2.9 Summary: conditions for the compnttional usefulness of proofs

In what follows, we collect together the various results and conditions v hich are relevant

to the useli nCss of proofs for coll putat ion, and explicitly describe the relationships between

them. First of all, we ha te c the results ihOUt the reduction rules invohed in normali/ation:

Ia) Syntactic validity of' the reduction rules for prools (gl ,en in section '.4) and of pruning:

each of these operations yields a s eil-fornied proof %lhcn applied to a well-formed proof.

(1b) Prese r'atio n of the end-loruitila: .he reduction rules do not nodify the end-f'ormula of a

pr2f.

4) 0
,4 i~l26



(1c) Termination: every sequence of applications of reduction rules to a proof terminates.

(1d) Preservation of "closedness": a reduction rule yields a closed proof when applied to a

closed proof.

Second there is the result concerning the normal form (sections 2.3, 2.5):

(2) A normal, closed, Flarrop proof of 3xA has the form,

1

A(t)
31---
3xA(x)

All of the above results are purely syntactic in nature. No mention is made of the

meaning of the formulas which appear in proofs. However, we have,

(3) The inference rules of nalural deduction ;.-c sound will) respect to the usual Tarskian

scnlantics.

The inference rules are also sound for the intuitionistic notion of validity. As a

consequence, each of the remarks made below will continue to hold if the words truth and

validity are taken to refer to the intuitionistic rather than the classical notions.

The final result which guarantces the possibility of Cxecuting proofs of V3 formulas is:

(4) If II is a proof of 3xA(x) meeting certain conditions, then the normalization procedure

terminates when applied to 11, and results in a proof having the form,

114A(t)-
31-

3xA(x)

where A(t) is tre (in some intended model).

I'he conditions for the result (4) are: (a) the proof must be closed, (b) all axioms

* appearing in the proof must be I larrop formulas, (c) all axioms appearing in the proof must

, be true, and (d) the axioms which appear in proofs generated by proof procedures must be

j' If true.

The proof of result (4) from the various results under (I), (2), (3) above is as follows: If i is a

. proof of 3xA(x) meeting the conditions (a)-(d) of (4), then

-: °nornmlization terminates on 11 by (Ic),

27

,.- -.-.
In- r30



and yields a proof in the form,

H
A(t)3'-

3xA(x)

by conditions (a),(b) and results (la),(lb),(ld),(2);

o finally A(t) is true by result (3) and conditions (c) anc (d).

We wish to emphasize the degree to which the various results and conditions which come

into the proof of (4) are independent. In particular, none of the results under (1) and (2)

depends in any way on the truth of the axioms which appear in proofs. Thus syntactic and

semantic considerations do not interact and can be examined separately.

I

i 28



Chapter 3

Efficient Implementation of Operations on Proofs

'The normalization and pruning operations described in tile last chapter are quite
inefficient if implemented in a literal minded way. The problem is not so much that the
asymptotic efficiency of an algorithm is degraded if it is formalized as a proof, but rather that
the elementary operations which arc used in normalization are computationally expensive.
For example, the substitution of a proof for occurences of an assumption is an expensive
operation, both in time and space.

I lowever, as we will show in this chapter, normali.ation and pruning can be implemented
in an efficient manner if an appropriate data struIcture for proof's is used. Specifically, we
will represent natutral deduction proofs by terms of an extended ?i-calcults. The
nornali/ation of such X-caluclus terms can be implemltced elficiently by using environments
instead of literal substitutions, as is done ill interpreters for X-.alculuLs based languages such as

LISP.

In section 3.1, wc describe the connection between the natural deduction formalism and
the typed -calculus. I- mphasis is placed on pure implicational logic, where the connection is
most direct. In sections 3.2 - 3.4 we prcsent a X-calculus based representation for natural
deduiction proofs of Full predicate logic. Sections 3.5 and 3.6 concern the manner in which
norm.ldi/ation and pruning operations apply to this lepresentation. In section 3.7 we describe
an additional redtction rule used in the experiments of chapter 4 - namely, the permutation
rule fr V-elimination. In section 3.8, schematic examples are presented which illustrate the
effect that prouning can have on the comptutational efficiency of proof's.

3.1 Natural deductiomi and the typed X-calculus

'The close structural corrcslpondlncc between natural deduction proofs and terms of the
typed X-calculus has been known ror some time, and foirms the basis for the calculi of
constructions dcveloped by Scott[19701, IlowardJ19801, l)elirujinl[19701, Martin-I.61119791, and
others. (The calculus which is closest to our own "p-calcultus" [section 3.21 is Martin-
I.ii1sl 1)791 theory of types.) The central idea here is that the sane elementary operations may
be mm sed in (1) con stricting and applying gnel 'ai methods of compiutation, and in (2)
establish illg and applying general truths. As an example, ,'onsider (a) a term t(x) of the typed

C. -calculus in which (only) the variable x appears free, (h) a proof I1 of a formula 13 in which
(only) the formula A appears as all opel assuLption. In both the cases (a) and (1)), one has an

F " 'incomipletely given construct: t does not denote any particular o ject, but will do so once a

29



concrete value has been supplied for x and substituted into t; similarly, II does not establish

the truth of B, but will do so when any proof of A is given and substituted for occurences of

the assumption. 'lhus, in both cases, the incomplete construct in question supplies a general

method for passing from a value (for the variable x or the assumption A) to a result (of

substitution). One may apply the operation of abstraction to the incomplete construct so as to

arrive at a term or proof which describes this general method. In case (a) the abstraction is

written, "Xx.,' while in case (b) the abstraction is the proof,

[A]
[IB

Dl.
AD B

One also has the converse operation at one's disposal, namely, applicalion. If one has a

term t, which describes a general method, and a term t2 of the appropriate type, then one
may form the term "t1 (t2 ), which denotes the result of applying the general method tI to the
input t2. Similarly, if one has a proof Il of A D 1, - that is to say, a general method for
getting from proofs of A to proofs of 13 - and also a particular proof [12 of A, then one may
form a proof which denotes the result of applying Ill to 1 2. Ihat proof is:

112 FI 1
A ADB

Thus, tile constructor "' which is used in building up X-terms corresponds to the

inference rule DI. while the constructor for application: tt(t 2) corresponds to the inference
rule D.

In both the X-calculus and the formalism of natural deduction prool, normali/ation
involves applying general methods (as descrihed by abstractions) to given inputs. Specifically,

the /3-conversion rule for the X-calculus reduces an application (Xx.t,)(t2 ) of an abstraction
(Xx.t 1 ) to an input t2 to the term t l[X"t2j. The corresponding reduction for proofs is just
implication reduction:

ii

IAI
[2

Dl [A]
A A DB 12

DF

30

4



For natural deduction proofs of pure implicational logic, the correspondence to the typed
A-calculus is exact; any such proof may rewritten as a X-calculus term by (1) replacing
assumptions by variables, (2) replacing each D-introduction inference by a X-abstraction of
the variable corresponding to the assumption discharged by the inference, and (3) replacing
D-eliminations by applications. This change of notation from proof to A-caluclus language
results in no loss of information, and furthermore, the D-reduction operation on proofs is
thereby mapped directly onto the fi-conversion operi._ion on X-calculus terms. The particulars
of this "change of notation" are as follows.

First we present a fornal definition of the typed X-calculus. We start with a collection of
symbols Ip. . . rn called the "base types". Complex types are built up from the base types
T I-.... ' by the binary constructor "-"; the inductive definition is: (1) each Tr is a type; (2)
if r, p are types then so is "T - p" . The base types are intended to denote sets of
"primitive" objects, while r - p is intended to denote the set of mappings from objects of
type T to objects of' type p. Next, we assume that an infinite set V T of variables is given for
each type r. The elements of VT are called "variables of type r". VT and V are assumed to
be disjoint for distinct types ' and p. The following inductive clauses define the notion of a
term of type T.

(1) each variable vT of type 7 is a term of' type r.

(2) If t is of type r ;and x is a variable of type p then Xx.t is a term of type p T 7.

(3) If ti is of type T - p and t2 is of' type T, then t (t2) is a term of type p.

By "pure implicational logic" is meant tile restricted natuil dcduction system in which
f'orinMilas arie built tIp froin p iopositional constants by use of' ip lication alone, and in whose

* ,4 proofs only tihe :) and DI inl'renccs appear. The formulas which appear in proots
correspond to the types of X-terms; a propositional constant 1) corresponds to a base type r.
while a forimula A D B corresponds to a type 7\ --+ rB. More precisely, we assign to each
implicational formula A a type 'TA according to the following rules. (1) l'ach propositional

,A constant 1) is assigned a base type T,. (2) If the forniula A has been assigned the type TA.

and the formula B has been assigned the type T,, then the formula A D1 B is assigned the
type TA -- T B.* We now deline tile map I' which rewrites proofIs as X-terins. It is assurmed to start with
that variable, (f o appropriate types have been selected f )r labeling formulas, we assuie, that is
to say, that a tnique variable vN of type T A has been assigned to each I'o'miula A. I' is
defined by induction oii the structure of prools. We use tile notation F: II t to indicate

that the wUIuC of' 1 applied to 1i is t.

in -31



(1) Base case: r': [Al = vA i

(That is, r when applied to a proof which consists simply of an assumption [A] yields the

variable vA which labels the formula A.)

(2)

B

r: DIl -- XvA. Fll)
A D B

(3)

flt I

A AD1

:12))

For example, the proof

[A] [A D(A D B)I
DI-

[AI A D 1
DI-

Dl-

AD B

D---
(A D (A D I)) D (A D 11)

when written in X-c.dclt jls notation yields the term

x v,\D (.\D lq,-X . I{(VIA D AD )I(VA))(VA)}

of type (TA-(r-A-rl)-(--) 'i[AD(ADW)D(ADI,

Notice Iht. for an prool' II with endiorinula A. the type of the X-caluclus notation i'(k I)

for that proof is TAV Sinility, the types Of the sItNCiIms of I'(11) correspond to the

ed LIil]ailis of (lie S11ti s i ools tromi which those sblerms arise.

What e hvie done so CM. is to show that natill deduction prootls of a restricted system

32

,4



....... ...... ... . ... ... . . . .. .: .r n nc.o _ , .,4
r 

. , K

can be represented as A-calculus terms. It is possible to represent any natural deduction

proof in the samc style, under the condition that appropriate additional contructors arc

adjoined to the A-calculus. But before going on to describe the A-calculus formulation of full

predicate calculus, it worthwhile looking more closely at the differences between the proof

fnotation and the A-calculus notation for proofs of pure implicational logic.

Both profs and A-terms may be regarded as labeled trees: proof trees are labeled by

ftrmulas and inference rule names, and "A-trees" by variables (at leaves) and construction

rule names (at interior nodes). From this point of view the difference between proof notation

and A-calulcus notation lies in the choice of information which is explicitly stored on the tree.

In proofs, a fo'mula is stored at every node. In a A-term, the corresponding type information

is associated only with the variables which appear at the leaves of the tree, and must be

computed for other nodes. In proofs, the connection between inference rules and the sets of
assumptions which they discharge must be derived from "type information" (ie formulas on

the tree). In A-terms, this information is ,'presented more explicitly: the discharged

assumptions are labeled by a bound variable.

Suppose that all type information is dropped from a A-term - that the typed variables are

replaced one for one by variables with which no type information is associated. Then the

resulting untyped A-term represents the "logical structure" of a proof, in the following sense.

The underlying tree of the untyped term records a sequence of applications of' inference rules

(in A-calculus notation), and also describes the graph of connections between inference rules

and the assumptions (represented by variables) which they discharge. Thus if one were to

take a proof trec, and strip off the forntimlas which appear on the tree, while retaining a record

of the "logical structure" of the proof, then the restilt would contain the same information as

an untyped A-Cxpression. (The logical structure of proofs in the current sense is exactly the

structure preserved by isomorphisms between proofs in the sense of' Statman[19741.)

Now, notice that the normalization reductions of the A-caluclus make no use of type

inrformation, if one wishes to normalite a typed A-calulcus term, one is free to throw away the

types before doing the normali/ation. and the result will be no different. Correspondingly,

the sequence of steps taken in the normalization of a proof depends only on the "logical
* structure" of the proof in the sense of the last paragraph. Two proof trees on which different

fi1rnmmilas appear will be subjected to the same sequence of re61~ction steps by normalization,

so long as the inference rules and the struIcturc Of' discharges of assumptions on the two trees
~are tile samle.

.f When we consider X-calculus notation for1 ar-bitrary natural deduction proofs, it will be

I'Seen that once againl type information is not necessary fo~r normalization. F~urthennore,

un t typd terns containl file desiredI Olltllt Of ctnlp ttaiOn1S, alld Call be Subjected to pruning.

? 33



That is to say, the "logical structure" of a proof as expressed by an untypcd A-term is

sufficient not only to dceternine the form of the normalization sequence, but also to determine

the output value which is extracted from a normal proof, and to allow pruning to takc place.

Thus, for practical purposes, it is always sufficient to deal with tie untyped variants of proofs.

The following remarks summarize the interest of using a \-calculus based notation for

proofs.

(I) The untyped variant of the A-calculuts notation for a proof contains exactly hal

information which is relevant to the execution and pruning of the proof

(2) An efficient technology exists fi" normalization of (proofy expressed as) A-calculus
lenns.

3.2 The p-calculus

It order to arrive at a notation of the kind discussed in the last section which is adequate

for arbitrary natural deduction proofs, new constructors Ibr the inference rules other than D-

introduction and D-elinination are added to the X-calculus, namely : (1) pairing (for A-

introduction), (2) unpairing (for A-climination), (3) 01 and 012 (for V-introduction), (3) OF

(for V-elimination), (4) FI (for 3-introduction), and (5) FF. (for 3-elimination). V-

introduction and V-elimination are treated using the "Old" constructors A-abstraction and

application. The extended system just described will be referred to as the "p-calculus".

We will have occasion to deal with both a typed and an untyped variant of the p-calculus.

'The relationship between proofs, typed terms, and untyped terms is the same for the p-

calculus as it is lar (ie "flin" A-calcutus. Namely, a typed term of the p-calculhJs costitutes

a complete representation o' a proof, while an untyped term serves to express only that

information in a proof which is needed for execution and pruning.

The "types" which will he assigned to terms of the typed p-calculus will not be types in

the ordinary sense, rather, they will be formulas of first order logic. The connection between

fbrmulas and types given in the last section lir implicational logic can he extended to the p-

calculus t rca in Cnit of fill Iit'lst order logic: it is possible to assign types of the ordinary kind

(ie classes of' fnit ctions) to arbitrary first order forinulas, and to assign fInctions to p-calculus

terms, il such a way that the two assignments are consistent. Specifically, a teurm of "type" q)

will denote a fRinction which actually belongs to the type assigned to q). However, none of

the results which will collcln [is here depend on the details of such assignments, or indeed on

,4 34

-- A



such assignments being possible at all. The reader will find further information on formulas
as types in Scott[19701, and loward[19801.

We define the untyped variant of the p-calculus as follows. The starting point for the
definition is (1) an infinite set V of variables. (2) a first order language L, as described in
section 2.1, (3) the special symbol #, and (4) a set 1) of "defined symbols" with associated

aritics. It is assumed that the variables V and the vaiables of I. are distinct. The variables of

1. are called "object variables", while the variables in V are called "proof variables". The
defined symbols 1) will be used as labels of proof procedures for lemmas, and in recursive
definitions (section 3.4) as well. The letters "a, P6", "f, g, It" and "x, y, z" will be used to
designate proof variables, defined symbols, and object variables, respectively. The p-calculus
P,, over L, then, is defined by the following inductive clauses. The phrase "p-term" is taken
to designate an clement of PL

(1) 'rhe terms and atomic formulas of I. are p-terms (sec section 2.1).

(2) The proof variables V are p-terms.

(3) The special constant # is a p-term.

(4) The defined symbols I) are p-terms.

(4) If t1.t2 are p-terms, then so is <t1,t2> [pairing].

(5) If t is a p-terms then so are 7r(t), 77 2(t) [unpairingi.

(6) If a is a variable, and t is a p-term, then Xa.t is a p-term. [proof-abstraction]

4 (7) If xI x2 . .. xn are variables, and t is a p-term, then Nx1 x2 ...xn.t is a p-term.

[object-abstraction]

(8) If t1.t2 are p-terms then SO is t1(t2). [Applicationi

j (9) If a is a proof variable, and tt,t2.t3 are p-terms then so is Ot(a,tl.t,)

(10) If a is a proof variable, x an object variable, and t1 ,t2 are p-terms, then El'(x,aU,t,t 2)
is a p-term.

4 ,35



Notc that, in thc case of object variables, we have choscn to introduce A-abstraction of

arbitrary arity as a primitive construIctor1 rather than using "Currying". Thbis simplifies thle

*correspondence between A-abstraction and V-introduction. Note that Ax1 x2  .Xn.t is n1ot

all bbrviaionfor XxIX **xnt

The above definition is given in terms of ordinary syntax suitable for written

presentation. IHowever, in our discussions of formal operations onl terms, we will treat p-

calculus terms ats labeled trees, as was done in the discussion of thle A-calculuis in thle last

section.

TIhere are several ways in which one can go about representing terms by labeled trees,
and thle details or how this is done atre not or any fundanrental importance. I lowever, in order

to avoid contusion latter, it is worthwhilie deciding here on at specific representation. Tlhat

rep reseniitat ion is ats follows. T he ic ait nsi p between at tern i and it~s uni~iiedae su bterins is

coded directly in the structure of' thle tree - each node represents at temn, and thle sons of the
node represent the immnediate subteris of* that term. Lear' nodes are labeled by atomnic
symblhols - proof' variables, #,. and symbolWs Of I.. I Uch noni-leaf' node is labecled by the

construIctor used for arri~ lug at thle current teri f'ront its immediate subternis. and by thle

valrialbles which are bound by that constructor. T[he constructor whinch appears at thle root
node of any term is rceferred to as thle "iliain const ruo ir" of di at termi T he constructors ai-e:
PAIR, APPLY, 7r,.' ?T, 011, 01), F. X . I T F. InI thle typed var-iit. of' tile p-calculuts,
nodes maiy be faibeled by fom it s well. No te Ulam the %aria bles hon d by a it 'ictor -

flr examtple the 'Y' in Ax .t or thle at" and 'x' in I (,at.t)-are nol regarded as
subtc rms, but as at part of thle In lim nit ii with whIich n odes of the ti-cc ari- labeled.

Inl what follows, thle lnot'Ition "A(B~l)" for aipplitioni is used in three dil'ercilt walys. (1)
When A and it arc p-calculus termns, A(MI) denotes tile p-termi \\ hose main constructor is
AIPI .Y and whose ininiediaite stibternis are A\ and It. (2) When A is aI constructor (such ats

7T 1 and It is aI p-terin, theni ,\( It) decsignatesc the rerslof' aplying the Constructor to thie term
11, that is to say. A(BI) desig-nates thle p-teni whose main constructor is A and whose

immnediate suibtcriii is It. (3) It' A is ain operaition onl p-teunIIs aInd It is at piceril, thenl A(Bt) will

denote tile resuilt ot' ipply ig A to It. ITius thre notation A(BI) sci~es both ats an external
syntax for at foirmal pi-terin whose inain constructor is \lPl'lY. and to denote tlie 'actul''

application of' an1 opecration to ani Object. I his is an aibiguity of' thle mention/use kind.
I Iowcver, inl each of' ie cae (1)I 3)onritext is S11rlilcient to resolse thle amlbiguity.

In def-ining thle t~ ped airianit or [lie p-Clculuis. it is mlost co.P eilient to proceed by

assiginig types (Ic forilis) nlot to sariablles. but rather to the nodes of p-terms. In

particular. at lypedi p-l nut is at p)-ternl sonIIC Of' whose nodeS ha,1e beeI labledk bly formutlas
according to cc rta in rules. I he I'oru di ssigned to at g i en ino de rep resenits thle type of' the

-- 36



subterm rooted at that node (or, in proof language, the end-formula of the subproof rooted at
tie node). We follow traditional terminology, and refer to a typed p-term as a construction.
The words "term" and "p-term" will be used to denote untyped p-terms.

Before describing the rules by which constructions are to be built up, we need to define
the notions of bound and free occurences of variables, and of substitution, as they apply to
constructions. We use the phrase "labeled p-term" to refer to a p-term to whose nodes

formulas have been assigned in an arbitrary manner (in constrast to a typed p-termn or

construction, whose labeling must follow certain rules).

l.et t be an labeled p-term. An occurence of a variable in t is an occurence of the variable

either as a caf" of the p-term, or an occurence of the variable in one of the formulas assigned

to the nodes or t. The notion of a bound occurence of a variable in a labeled p-term is
defined below. The definition follows standard lines, but includes new clauses for the

constructors EI: and OF. (The new clauses express the fact that OF and FE', like A, V and 3,
have the effect of binding variables.)

(1) Each occurence of the variable a in t2 or t3 (but not in tl) is a bound occurence of a
in the terms (a) O1(a,t,t 2,t3), (b) I'E(x,at,t 2), (c) Xa.t2 .

(2) Each occurence of the variable x in t2 is a bound occurence of x in (a) EE(x,a.t1 ,t,),

and ifn (b) Ay.t2 if x is among the variables y.

(2) Fach occurence of the variable x in the formula q) is a bound occurence of x in (a)
3xcp, and in (b) Vy.(p if x is among the variables y.

(4) If tl is a subterin of t2 , each occurcnce of a variable in t, which is bound in t, is also
j bound in 1.

Any variable occurence which is nlot specified as bound by the above three rules is a fr'ee
uoccurence of the variable.

-! 'The elementary opcrations on terms - notably the renaming of bound variables and
substitution - arc defined in exactly the same way for the p-calculus (typ i or untyped) as
they are fbr the plain A-calculus. One only has to take the new variable-binding constructors

()OF and IT into account in the obvious way.

For example, the definition of a-conversion (renaming of one bound variable) includes

. the following clause for OF: Suppose that the termis t2',t 3' result from the terms t,,t, by the
replaccment of all ree occurcnces of the variablc a by the variable Pt. Suppose Curther that P1

2r does not itself occur frce in either t2 or t3. [hen one may replace the term ,:(at ,t 3) by

' ."37

.... I ' ._-

* - --,



the term OE(vt,ttt 2'.t3'). The other clauses for a-conversion are the standard clause for X, and
two clauses for EE - one for renaming the object variable, and one ror renaming the proof

variable.

The operation of substitution may be defined as follows: in order to substitutei thc t 2rm

for the variable x in t1, first rename all bound variables which appear in t, in such a way that

no free variable of t has a bound occurence in t,. (This can be done by a series of a-

conversions.) Then replace all free occurences of x in t, by t2. 'The result of this operation

will be denoted by, "t1[x , t2J". Evidently the above definition does not fully specify the

term which results from substitution because it leaves open the particular choice of variables

which are used in renaming. IHowever, the result is uniquely defined modulo renaming of

bound variables. We shall henceforth regard as identical terms which differ only in the names

of their bound variables (ic, terms which can be transformed into each other by means of a-

conversions).

The notation tl[t2 Zt 3] designates the result of substituting t2 f'r some occurcnces t," t3 in

t1. Whenever this notation is used, it is assumed that no bound variable of ti appears free in

t3. (TIhts, no fice variable of an occurence of t3 within tI is bound by a constructor of t,.)

As in tile case of sub stitution of Ierms for variables, the substitution of terms for terms

inolves changing of bound variable names in t sO is to avoid conflicts with the variables

which appear free in t. f'inally. tjx,-t2Il denotes the result of substittiing the terms t2 for

the variables x inl parallel.

i We ilrc [low ill it )Siti()l t) tlIcIItle tihe notion of at I)7ed Ip-Ierm l * 1"conlslrm lionl. A
construction is a I cled p-ter n which is built iL p according to the rules given below and

which in addition satisfies the f'ollowing general restrictions: (1) I ,very occurence of a proof

variable in it construction t nust be llbeled by a frlb in Ia. (2) Suppose that t' is any subterni

of the constltlction t, alld that a is a proof lariable which occurs frcc in t'. '[hen every fr'ee

occurence of a in t' lust be labeled by the same firmttula.

,The rules lfor boilding tp constructions given below correspond exactly to the inference

'lrules o" naturLil dedutclion. The inane of' the inference rule correspon ding to each rule is

given in brackets next to the rule. We inake use of the notation t:l" to indicate a construction

whose root is labeled by the fornlnla F. (Othcr nodes of t:lF than the root may be labeled by

fiorniuls as well). Most of the rules are giken in the notation "tl:lI, t2:l ... = t : :l",

nicaning that if tl:l" I. t-.: I2  . . ar:I"n  aire constrtctions then so is t:..

As a parameter of the definition given below, we assume that a collection of proof

procedur's y,,'? • has been ,i cn [6for lenllas I:lJl: .... Ill. I the current context -

foml x 1 x . k( '.sap'cdi' hcwe ieitrst 1 t .~ha st ai h otx fadcsino osritol ro ioeu' o

38



either returns "FAll ", or else supplies a construction t:F(tl,t2  tk), whcrc the construction t
does not itself make use of any lemmas. Further, we require that y(tt 2 .. tk) be a closed
construction whenever t1,t2 . . . tk are closed. 'Ilus a proof procedure in the context of
constructions plays the same role as the proof procedures for natural deduction proofs

discussed in section 2.5. We assume also that names ft,f2 . . .. fn of appropriate arities from
the set 1) of defined symbols (see page 34) have been assigned as labels of the proof

procedures Y1,Y2 ...n"

The clauses of the inductive definition of the notion of a construction are as follows.

Note that we have required that the axioms which appear in constructions be Harrop formulas

(clause 2 below). icnceforward, we will also assume that the proofs which we consider

contain only Hlarrop axioms, since proofs which do not satisfy this requirement are not in any

case of much computational interest.

(I) a:A is a construction for any proof variable a and any formula A [assumption].

(2) If F is any Harrop formula, then #:F is a construction. [axiom]

(3) If f labels a proof procedure for the lemma A = Vx1,x2 . . . xq, then f:A is a

construction. [lemma]

(4) tl:A, t2:B < (tlt2>:AAB [A-introduction]

(5) (a) t:AAB = i1 (t):A (b) t:AAB = w2(t):B [A-elimination]

(6) (a) t:A =: 0 1 (t):AVII (b) t: B 012(t):AVII IV-introductionj

(7) Let t1:AVB, t2:C, t 3:C be constructions, and let a be a proof variable. Suppose that
free occurences of a in t2 are assigned the formula A. and that free occurences of a in

t are assigned the formutla I. '[hen OE(a,tt 2,t3):C is a construction. [V-elimination]

(8) let t:B be a construction in which free occurences of the proof variable a are

assigned the formula A. Then (Xa.t):AD13 is a construction. [3 -introduction]

* (9) t :ADlB, t2:A => t(t2 ):B [:D-elimination]

* (10) l.et t:A be a construction with the property that no variable of the vector of.

variables x appears free in any of the formulas assigned to the free proof variables of t.

'Then (Ax.t):VxA is a construction. [V-introduction!

(11) t1 :VxA(x) ==o t(t 2):A[~x-t 2] where t2 is any vector of terms of 1. [V-eliminationi

39

... !



(12) t2 :A[x-t]J EI(t 1 ,t2):3xA [3-introduction]

(13) Let t:3xA, and t2:C be constructions satisfying the following restrictions. (a) Free
occurences of the proof variable a in t2 are assigned the formula A. (b) Let F be any
formula which is assigned to a free proof variable of t2 other than a. Then x may not

appear free in F. (c) The variable x may not appear free in C. Then EE(x,a,tt,t 2):C is a
construction. [3-elimination]

Note that, since we do not distinguish between formulas which differ only in the names

of their bound variables, the identity of the variables bound by X and the variables bound by

V in "(Xx.t):VxA" of rule (9) is a matter notational convenience and not a requirement.

That is to say, for any new tuple of variables y, "Ay.(tI.x-yJ):VxA" and "(Xx.t):VxA" are

equivalent labeled p-terms and have equal standing as well formed constructions. A similar

remark applies to the construction of rule (11).

Arbitrary natural deduction proofs can be r-written as constructions by a straight-forward

extension of the methods which apply to proofs of pure implicational logic. Specifically, one

starts out with an assignment of proof variables a A to formulas A. Then the map r from
proofs to constructions is defined by induction on the structure of proofs just as it was in
section 3.1. What r does is (1) replace each assumption [A] by the variable aA assigned to A,
(2) replace axioms by the special constant #, (3) replace lemmas by the defined symbols

which label their proof procedures, (3) replace each inference rule by the corresponding

constructor, and finally (4) label each node of the p-term by the formula which occurs at the

corresponding node of the proof tree. The passage in the other direction is even more

straight-pforward: to go from a construction to a natural deduction proof one keeps the
formulas and constructors which label the tree, but the proof variables are thrown away. The

clauses of the inductive definition of Fare given below, using the notation F: H = t:F to

indicate that the value of F applied to I1 is the construction t:F.

(1) Base case: F: [A] =* aA:AK

(That is, F when applied to a proof which consists simply of an assumption [A] yields the

construction aA:A.)

(2) Base case: r: A = #:A, where A is an axiom.

(F when applied to a proof which consists of an axiom A yields the construction #:A.)

.40

l'OF



(3) Base case: r: A =* f. where A is a lemma, and where f labels a proof procedure for the
formula F. (Evidently, it is possible - by virtue of the effective character of r itself -to
convert any natural deduction style proof procedure into a construction style proof procedure.)

(4)

A I B
r: Al - <r(111).r(n2)>:AAB

AAB

(5a)

11
AAB

r: A E F~)
A

(5b)

AAB
I': A -- ,r2(InH)): B

B

(6a)

A
r: VI- _ 0 1(rInf)):AVB

(6b)

AVB

AV It C C
I': V I, oLx (/ [(1). r(Il 2)faA*.-p, r(T13Xa,0-,):C

I C where the "new" variable fi does not occur

free in r(112  or in r(n1).

41



(8)

B *
r: Dl AVA. r(n):A D B

(9)

A ADB
r: DR (.'(n 1)XF(fI2)):B

(10)

A
r: Vlx----- Xx. r():VxA

VxA

(11)

VxA

(12)

AF'-
r: 31- =Fi1(tjl'(l1)):3xA

3xA

(13)

I11 112
3xA C

C

'1lic constmiction nwtion tIc for tIe tipper bound proof Ii of section 2.8 is given below

as an example.

4 42

*, 4F



OE(a.J-ESSIXx,1),
EI(y+1,#(a))

OF(fl,LESSD(y,1),
EI(x + 1, #(f)),SEl(2xy, # (<a,P>)))): 3z%(x,y.,z)

In the ab:we presentation of U., only the root node is explicitly labeled by a formula; we

have neglected to specify the formulas which are attached to the various subterms of the

construction. A complete description of the construction is as follows, where the fomula F
which labels each subterm t is specified using the notation "t:F".

OE(a.,{Il'SSI):Vxy(x<yVy<x)}(x,l):x <lVx>l,

[l(y + 1.{ # :x <IDP(x,y.y + 1)}(/:x< l):4P(x~y,y + 1)):3z*l(x,y,z)

O-'(fi.{ Li:SSI): Vxy(x~yVy<()}(y,l):y< 1Vy>l,

FI(x + 1.1 # :y< :lDq'(x,y,x + l)}(/?:y<1):'l(x,yx + 1)):3z*l(x,y,z),

H El(2xy,(# :(x> I)A(y> )D',t(x,y,2xy))

! ~~~~(<a:{ x>1 .fl:{ y> }>:{x>1A y >1}): '(x~y,2xy)))): 3z P(x~y,z)

-3.3 SuJstilution

The effect of the principle of "substitution of equals for equals" can be obtained by the
use of a scheme of flarrop axioms (as was done for FAL.SE - elimination; see section 2.1).

Ilowever, it is more convenient for our purposes to include the following inference rule which

expresses this principle directly.

Substitution:

i t t 2  A t1 =t2  A
and

ia[ti'4t Alt2-ttl

On the p-calculus side, a new constu'uctor: SB(t1.t2) is added, and the clauses

til=t 2  A

I': Sil - Si(_(I_1) , )):Aftt'4t

f43

IJ



H71  H2tl=t 2  A

U: SB -= SB(F(nl),F([ 2)):A[t2-L2t 1
A[t2 t4t 1]

are added to the definition of the map F from natural deduction proofs to constructions.

3.4 Recursive constructions

Recursive definitions of functions arc commonly used for describing computational
methods, both in mathematics, and in automatic computation. Most programming languages

allow defintion by recursion, and in purely applicative languages, such is pure LISP

[McCarthy et al, 19621, the principal constructors used in building up programs are just
function application, and recursive definition.

We too will make use of definition by recursion. Specifically, we will allow (mu:aally)

recursive definitions of the form:

ft I" IlA

f2  y:A 2

f . o n~

where the {f} are defined symbols, and the {t} are constructions in which ft .. . fn may
appear, and the {A} are universal formulas. The following restrictions apply: (1) each
construction ti:A. must be closed, and (2) each occurence of a defined name t in any t must
have A, as its attached formula.

Putting the matter more formally, we implement definitions by recursion in the following
way. A parameter of the definition of the class of constructions is the set of assignments
made to defined symbols. Until now, those assignments have been proof procedures with

appropriate charactersistics. lenceforth, we will allow constructions as well as proof

procedures to be assigned as values of defined symbols, subject to the restrictions described in
the last paragraph. Of course, each defined symbol may be assigned only one value, whether

a proof procedture or a construction. We will refer to a set of assignments of constructions
and proof procedures to defined symbols as a "system of definitions" or a "system of
lemmas". The system of definitions which is in effect for the purposes of any particular

disLussion will be referred to as the "current system of definitions".

4 44

'.4

- V* .



If one switches back from the terminology of constructions to that of natural deduction

proofs, then the "recursive proofs" which correspond to recursive constructions are proofs
which use their own end-formulas as lemmas. An example of a computationally useful

recursive proof is as follows.

L.et pred denote the predecessor function on natural numbers (it does not matter what

value is chosen for prcd(O)). Then one formulation of the induction principle for the formul,

9p(x) is as follows:

IND,: Vx( {,p(O) A Vy (y*O A q,(pred y)) D q)(y))} D q(x))

The following is a a recursive proof of IND - a proof in which IND itself is used as a

lemma. Wc will need an abbreviation. Let I-I be the formula:

Vy (y#0 A p,(pred y)) D 4p(y))

Then INI)P is just Vx(q, (O) A ti D ,p(x)). The proof, then, is as follows.

INI)9 , :Vx( tp(O)AII D q(x))

V E

[9q(O)AIl] p()AHDq(pred x) [p(0) A H]

DF - AE
[p(O) A IlI I xO] tp(pred x) H

AF:- Al - VF-

Vxy(x=yVx :y) [x=0] q(O) x*OAqp(pred x) x#OAi(pred x) D qp(x)
V SB--- Dl

x=0 V xO q)(x) cp(x)

DI

$(O)AII D p(x)
VI.

Vx(q)(O) A H D 9(x))

In the notation of constnctions, the above proof of INID9 , looks like this:

INI) Xx.Xa.OF(f,,FQI)(x,O),

f(w2 (a))(pred x)}(<%(tINI )Tpred9 ,  x))(a)>))

* : where FQI) is a proof procedure for the formula Vxy(x=yVx:y); QI) returns tie

45

f I ' "K



construction, "Ol(#:t1=t2):t 1 =t 2Vtl*t2" if tj and t2 are closed terms with tl=t2 and
"01i2(#:tlt2):tj=t2Vtj*t2" if t, and t2 are closed terms with t,*t 2.

The usefulness of this construction derives from the fact that the value to which the

lemma IND is applied is the predecessor of the value to which the theorem IND is applied.

The construction may be executed when applied to a particular numeral in the same way that

a recursively defined function is run: by repeated replacements of the defined name IND by
its definition. As a consequence of the fact that the value passed to succesive recursive calls
to IND is constantly decreasing, this mode of execution will terminate (under the right

reduction order), yielding a construction in which no reference to IND any longer appears.

The details of this process will be discussed later (section 3.5).

A somewhat simpler way of achieving the effect of induction by the use of recursive

proofs is as follows. Suppose that one has a proof I1i of q)(0), and a proof H2 of Vy (y O A
q,(pred y)) D -W(y)). Then the following recursive proof P T of Vxqp(x) is adequate to the

same computational purposes as is the above proof of IND.

P T :Vx( q)(x))
V 1- 112

[x*O] ip(pred x) Vy(y O A q)(pred y) D q(y))
fit Al VE-

Vxy(x=yVx:py) [x=O] qP(O) x O Aqp(pred x) x*O Aq(pred x) D q?(x)
VE SB- DE-

x=O V x*O P(x) p(x)
VE

tp(x)

VI
Vx (x)

'[he construction notation for P T is as follows, where t, is the construction notation for

11P and t2 the construction notation for -12.

P4P = Xx.OF(a,EQI)(x,O),SB(a.tl),

(t2(x)) (<aY T(pred x)))

Suppose that a system S of lemmas has the property that every axiom in sight is true in a
particular model M. That is to say, we suppose that all the axioms which appear in

constructions of S, and all axioms which appear in the constructions generated by proof
procedures of S, arc true in M. Note that thcse conditions are still not sufficient to guarantee

[I 46



that constructions built up from lemmas of S will have end-formulas which arc truc in M.
The reason for this is that constructions can take the form of circular arguments. Consider,

for example, recursively defined construction : "f:VxA ,- f:VxA", which of course provides

no evidence at all for the truth of VxA. In order to verify the truth of the end-formula of a
construction, or the correctness of the computation dcscribed by the construction, it is not
sufficient to verify the axioms which are used (directly or indirectly) by the construction. It is

also necessary to verify the truth of the lemmas %.hich are used, even though (recursive)

constructions for those lemmas have been supplied.

3.5 Operations on constructions

In this section, the various elementary operations which are involved in the computational

use of constructions are described. These operations are: (a) the normalization reductions, and

(b) the pruning operations. These operations are arrived at by direct translation into

construction notation of the operations on natural deduction proofs given in sections 2.4, 2.7.

A-reduction:

IT(<t,:At2:BX:AA I):A *,tt:A

i72(<t, :A,t 2:BI:AAB):B => t2 : B

V-reduction:

O1"((.O II(t1:A):A V .t2:C.t 3:C):C =t 2 [a-tt]:C

()l'(aO12(t 1 : 1 ):AV IIt2:Ct 3:C):C t3Ia.-ttl:C4
D-reduction:

:1 la"11

V-reduction:

(XX_.(tl:A)):VxA }(t2) :A =tjlx,-t2l:ALx..-_2

3- reduction:

II:(x E(t I(t,: A): 3xA).t,:C) = (t3[x,-tt)[a -4t27:C

i 47



Lemma-reduction:

{f(f:VxAy)}:Alx.-l y(t:ALxJ-fl

condition: f has been assigned the proof procedure -y, and TV(!FAIL.

[(f. VxA)(t }:A[x 4-t_ t'(t :ALx -t_

condition: t is closed, and f has been assigned the construction t'.

In addition, a reduction rule for the new substitution inference of section 3.3 is needed:

SB(tl:(t 3 = t4),t2:Alx,- t31):A[x -t4  t2:A[x 4-t41

condition: t, may not contain free proof variables.

[he effect of SB-rcduction is to take the construction t2 and simply replace the formula
A[x+-t 3] attached to its root by A[x-t 4], and thus dispensing with the SB inference rule.
Evidently, if t3 and t4 are distinct terms, then the result of applying SB-reduction to a
construction will be a labeled p-term which is no longer a construction. However, if the
axioms which appear in t are correct (in some particular model) then t and t will denote thet  t3  t4
same object in the model, and in this sense the formulas A and A have the same meaning. In

fact, nothing will go wrong if we fail to distinguish between formulas which differ only by

substitution of one term of I. by another which denotes tie same object. More formally,
relative to any particular model, we may expand the class of constructions to include all of
those labeled p-terms which can be arrived at by substitution of "equals for equals" in

formulas. This mars the uniformity or our treatment in that introduces model-theoretic

considerations into the delintion of the notion of a construction, whereas that notion has been

purely syntactic until now. However, as we have said, none of our i'esults are affected.

The pruning reductions are as follows:

OF(a,t1:AVB,t2:C,t 3:C) :C t2:C

Condition: a does not appear free in t2.

OF(a,tI:AVI,t 2:C,t3 :C :C t3:C

Condition: a does not appear free in ty

"3*

48Ft



Note that each of the operations described in this section applies to the untypcd part of a

construction independently of the attached formulas, in the following sense. Let t:F be a

construction, and let t':F be the result of applying one of the operations listed above to t:F.

Further, let untyp(r) for any construction r denote the untyped p-term which forms the

"skeleton" of r - that is to say, untyp(r) is arrived at from r by removing the formulas which

label the nodes of r. Then untyp(t') can be computed from untyp(t) alone. As was
mentioned eacicr in the context of the typed X-calculus, the consequence of this observation

for computational purposes is that the execution and pruning of a construction may be carried

out by treating only its untyped part; the attached formulas nccd not be carried around in the

course of the computation. In order to clarify the manner in which the various operations
apply to untypcd p-terms, we list those operations below with the type information left out.

A-reduction:

=> t

w2(< t I2Y)  = t2

V-reduction:

Ot'(a ,Oiltlt,3 t2[a *-tl]

OF ( a ,O I2(tl ),t2,t 3)  =t t3a - tt

D-rcduction:

(A a.t t)(t2 ) tl[a +'-t2

V-reduction:

i

3-reduction:

Etl:(x,a,El(t I,t),t) (t31x,-t I)1a-t 21

I .emina-reduction:
I

. condition: t is closed, and f has been assigned the proof procedure y.

49



f=t t'Ot

condition: t is closed, and f has been assigned the construction t'.

SB-reduction:

tSBltlt2) t2
tt

condition: ti does not contain free proof variables.

Pruning:

OE(a,t,tt) t2

Condition: a does not appear free in "

OF(at,t 2 ,t3) t3

Condition: a does not appear free in t3.

3.6 Results about constructions

As was emphasized in section 2.9 in the context of natural deduction proofs, the results
and conditions which are relevant to the computational use of proof normalization are of

several independent kinds. Specifically, there are results concerning

(1) the syntactic soundness of the normali/ation reductions,

(2) the semantic soundness of proofs,

(3) special properties of proofs in normal form, and finally,

(4) the termination of reduction sequences.

The conditions upon which the results in one catagory depend, and the proofs of those
results, are for the most part unrelated to tile conditions and proofs which come up in the
other catagories. In sections 2.3 and 2.9, reults about normalization were stated without proof
as they apply to natural deduction proofs. In this section, we will prove or" sketch proofs of

the corresponding results which apply to constructions.

50



- -1==,. .... -............. _ .~~~~............... ,...... ............ .......... -- 4.. .-A-=

Let R be the set of all the elementary operations on constructions which were described

in the last section. We have:

Proposition 1: Each of the operations of R yields a construction when applied to a

construction.

Proposition 2: Each of the operations of R yields a closed construction when applied to a

closed construction.

Proposition 3: Each of the operations R preserves the end-formula of the construction to

which it is applied.

The above propositions can be verified by inspection.

Definition: A construction t:F is a valid construction relative to a model M if the

universal closure of each axiom and each lemma which appears in t is true in M

Definition: A system of lemmas is valid relative to M if each construction which appears

in the system is valid relative to M, and if each proof procedure Y which appears in the
system returns only valid constructions.

Proposition 4 (Soundness): Suppose that t:F is a construction with free proof variables

a, . .. an, and free object variables xi . .. xn. Suppose further that t:F is valid relative to M.
Let A1 . . . An be the formulas which are attached to the free proof variables a, ...an.
Then Vx1 x2 ... xn( (A1 A A2 . . . A) D F) is true in M.

Proof: Induction on the structure of constructions: each of the rules by which

constructions are built up preserves soundness.

Proposition 5: Suppose that (a) t:F is valid relative to M, and (b) the current system of

lemmas is valid relative to M. Then the result of applying any of the operations of section

3.5 to t:F is a valid construction.

Proof: Observe that, with the exception of the lemma-reduction operation, all operations

in R modify the axioms appearing in constructions only by instantiating free variables which

appear in those axioms. The proposition follows.

Detinition: We classify constructors as either "introduction constructors" or "elimination

constructors" according to their correspondence to the introduction rules and elimination rules

*1 ~of natural deduction. The introduction constructors are PAIR, Of , 02, \-ABSTRACTION,
and [I, and the elimination constructors are wil, 2, OH, APPILY, EE, and SB. (SB
"eliminates" an equation.)

'

15



Theorem 3.1: Let t:F be a closed construction in normal form where F is not a liarrop

formula. Then either t:F is a lemma (ic has the form f.F where f is a defined symbol), or the
main constructor of t is an introduction constructor.

Proof: By induction on the structure of proofs. Suppose that t:F is a normal closed
construction where F is not Farrop. Base case: If t is an "atomic" construction consisting of
one node, then it must be either (1) an assumption, (2) a Ilarrop axiom, (3) a lemma f:F.
Cases (1) and (2) are impossible: (1) because t is closed, (2) because is F not a Harrop
formula. Thus case (3) must hold, and so the base of the induction is verified. Furthermore

we have verified that any t:F which is not a lemma (and which satisfies the hypotheses of the

theorem) must have a "main" constructor, whether it be an introduction contructor or an

elimination constructor, since t cannot be atomic. For the induction step, we assume that the
proposition holds for each sub-construction of t:F, and then derive a contradiction from the

supposition that the main constructor of t is an elimination constructor. 'here are 6 cases to

consider. Suppose that the main constructor of t is (1) 7 i, (2) 7t 2, (3) OF., (4) APPILY, (5) FE,
(6) SB. Then t:F has one of the forms (1) 1Yj(t:FAG):F (2) 1r(t:GAF):F (3)
OF(a,tt:AVB,t2:F,t 3:F):F (4) (t:GDI:)(t:G):F or (t, :VxA)(t 2):A[K,-t 2 (5) Et-(tt:3xA,t 2:F):F

(6) SB(t 11t2):F. In case (6) t, is closed, and therefore Si reduction can be applied, contrary to
the hypothesis that t is in normal forrn. In all other cases, t, is cloied and has a non-Harrop
end-formnla, so the induction hypothesis applies. Thus tI is either , lemma, or else has an
introduction constructor as its main constructor. If t, is a lemma, then t must have the form

where t2 is closed, and thus lemma-reduction could have been applied, contrary to the
hypothesis that t is normal. If t1 has an introduction constructor as its main constructor, then,
by virtue of the form of the end-Ibruitila of tI, that main constructor muSt be (I) PAIR, (2)

PAIR, (3) Olt or 012. (4) X-ABSI'RACIION. (5) FL. But then one of the reduction rules
(1) A-reduction, (2) A-reduction, (3) V-teduction, (4) D-reduction or V-reduction, (5) 3-
reduction, call be applied to t, again contrary to the hypothesis [hat t is in normal form.

Corollary 1: If t:--xA is closed and normal, then t has the form I l(t 1.t :A[x-tl ):3xA. If,
in addition, t is valid relative to M, then A(t ) holds in M.

Corollary 2: If t:AVII is closed, and normal, then t has one of the forms 01(t :A):AVB,

or 012(t:B):AV B. I f in addition, t is valid relative to M, then. in the first case, A holds in

M, and in the second case IB holds in M.

'The tbllowing corollary of the various results gikele above establishes the uisefulhness of

normalization for compiutational purposes, and the conditions fbr tie partial correctness of a

construction regarded as a computational description.

Corollary 3: ILet ti:Vx3yq(xy) be a closed construction and let t2 bea closed terni of L

Suppose that some sequence of iipplictions of operations of 1, to the construction

52

l "A



t(t2):3y9(t 2,Y) yields a normal construction t'. Thcn t' has the form El(t 3,t4):3y(2,y).
Further, if t, is valid relative to a model M, and the current system of lemmas is valid relative
to M, then 9)(t 2,t3) is true in M.

Corollary 3 shows that normalization constitutes a satisfactory means for executing a
construction t:Vx3yq,(x,y) in the sense that if one "puts in" a value t2 for x, and if
normalization terminates, then a value t3 for y conies out. In addition, the corollary shows
that t, regarded as a program is partially correct with respect to the input-output specification
T, under the condition that all lemmas and axioms in sight are true. Thus the verification of
the partial correctness of an algorithm expressed by a construction is a matter of establishing
the truth of formulas which appear explicitly in the construction and in its system of lemmas.
As a consequence, the passage from a construction to its "verfication conditions" is simpler for

constructions than for computational descriptions of a more conventional kind.

We turn now to the question of termination.

Definition: A construction t:F has the "termination property" if every sequence of
applications of operations in R to t is finite. That is, there is no infinite sequence of terms
t1, t2, ... such that t1 = t, and such that t, arises from t, by the application of one of the
reductions of R.

Theorem 3.2 (lermination): Sujppose that I:T is a recursion-free construction in in the
seuse that all defined symbols which appear in t are assigned proof procedures and not
constructions. Then t has the termination property.

The standard proof of the termination of' normaliation for the predicate calculus (see eg
Prawitz419691) or- equivalently for the typed A-calculus (sec 'I roclstra 11973AJ) applies to the
calculus of constructions with only minor technical modifications. Therefore, we omit the

* .proof of theorem 3.2 here.

lEvidently, if recursively defined symbols appear in a construction, the termination

theorcm no longer applies. Indeed, there are recursive definitions of a symbol f (such as the
looping definition "f:VxA - f:VxA") which have the property that no finite sequence of
reductions of tt) where t is closed can lead to a normal form.

Consider the formulation of first order arithmetic which is arrived at by taking the
members of the schema IN)T as the only recuisive constructions. Even here the termination
property fails. The reason for this is that one is free to repeatedly apply lemma-reduction to

' ! INi)q)(t), with t closed, without performing any other reductions, and this process will not
terminate. I lowever, termination can be guaranteed if an additional restriction is made on

f . _ _53



lemma-reduction as it applies to the induction schema. Namely, we require that if lemma-

reduction is applied to IND ,(t) yielding

t'= x.Aa.OFI3,EQD(x,O),
i SB(,,vl(a)),

{(7 2(a))(pred x)}(<fl,(IND 9 (pred x)Xa)>)) (t)

then t' must be brought immediately into one of the two forms

or

Xa. ({(V2(a))(prd t)l(<#,(IND T (pred t))(a)>))

(depending on whether the value of t is zero) before any other reductions are applied. (Ibis
immediate reduction of t' will involve one application of D-reduction, one application of
lemma-reduction to FQD, one application of V-reduction, and perhpas one application of SB-
reduction.) When this restriction is made, the effect of lemma-reduction together with the
immediately succeeding reduction steps is very much like that of the induction-reduction rule
in the usual formulation of normalization for first order arithemtic (see Prawitz[1965]). The
restriction results in a system with the strong normalization property - a fact which can be
demonstrated by minor modification of the standard proof of strong nomialization for
arithmetic (Troelstra[1973B]). Further, theorem 3.1 continues to apply, since we have
restricted only the order in which reductions may be applied, and have not thereby modified
the notion of a construction in normal form.

L 1eaving aside the special case of arithmetic, the situation is this. One may take any
algorithm which is expressed by an (ordinary) recursive definition and reformulate it as a
recursive construction; the form of the recursions in the construction will be identical to the
form of the recursions in the original definition. (A concrete example is given in chapter 4.)
If the ordinary rccursive definition terminates under some particular order of evaluition (eg
call-by-value or call-by-name), then so will the recursive construction under a corresponding
reduction order for normalization. We do not propose to investigate here the general question
of the termination of the normalization of recursive constructions. It is sufficient for the
current purposes to observe that the particular reduction order which we use in the
implementation (namely, the call-by-value order) terminates on the particular proof which

concerns us (namely, the bin-packing proof of chapter 4).

,54



3.7 Another reduction rule

An additional reduction rule beyond those so far mentioned is used in the normalization

of the bin-packing proof of chapter 4 - namely, the permutation rule for the V-elimination

inference:

[A] [B]
Il  1-12  II313

AVB CVD CVD [C] [D]

VE 1-4 n1,

CVD E E

VE-

E

[A] [C] [)1 [13] [C] [D]
nr2 114 115 H3 114 l15

CVD E E CVD F. E
n,~ VE VE

•AVB E E

VE-

In construction notation, this is:

OE(aOE(fltI:AVB.t 2:CVI).t 3:CVI)),t4 : :,t :F):E

Ol:~~1-(f.t,: A V B,OI (a,t2 :CV I),t4:t:, s: t-): I-,.O E(aI3:C V I).t4:1F.ts: E): E): E.

where it is assimed (without loss of generality) that PI does not appear

free in either t4 or t5.

,*1 None of the results concerning constructions given in section 3.6 is affected by the
addiion of this rule. This is immediate for all results concerning the properties of

b constructions in normal form, since any construiction which is in normal form with respect to

55

" - " ' ' .. , : .M.F&-



the reduction system which includes the new permutation rule is a fortiori in normal form

with respect to the reduction system without this rule. The only result which needs checking

is the termination theorem (theorem 3.2). But, as it happens, standard proofs of this theorem,

such as that given in Prawitzl1969I , treat reduction systems in which permutation reductions

are included.

3.8 Effects of pruning on efficriency

To avoid misunderstanding: The principal evidence which we will provide concerning the

unlit), of pruning in improving efficiency is the bin-packing example of chapter 4. But to help

in choosing other examples where pruning is likely to be of' use, it is desirable to illustrate the

features on wlhich tie behaviour ol pruning depends in a simple and abstract setting. With

this in mind. we make tile follov, ing formal points by means of schematic examples.

(1) iruning can lead to a very large increase in the efficiency of in algorithm which has

been specialized.

(2) Pruning can lead to a very large decrease in the efficiency of an algorithm.

(3) The inclusion of' proof% of I larrop tnornulas can improve the elfectiveness of pruning.

Consider. then, the following proof:

I'

56

f ft*
-1U in



1t

B4x)l fcG(y)!
Al

IF(y)l F(y)DC(x,yr 2) I(x)AG(y) (lI(x)AG(y))DC(x~y,r 3 )

C(xy,r2) C(x,y,r3)
F12 31- 31

F(y) /G(y) 3zC(x,y,z) 3zC(x.y.z)

3zC(xy.z)

tA(x)]  A(x)DC(x.y'r)
DL--

C(x,.y.r,)
li 31

A(x)VB(x) 3/.C(xy.z)
VP:----

3/C(x,y.z)
VI-

Vxy 3/C(xy,z)

xIhere the "results" ri , r-., '. arc distinct terns of L. Note that the above schematic proof P

has the proot, If of' section 2.8 as an instance: take A(x) "x<l", iR(x) = "01",

I:()="y1', (i(y v)=l", C'(xy.)~z)....l'(x~ ", r1=y+l", r2 ="x+ I". r,="2xy". P1 when

written as a construction is:

= Xxv. Ot:.t 1 .E-(l'.#(a))

P'l( r3, # (V¢.f /)))): 3iC(x,y,i.)

\, here tlt, arc the construction notations for 11 1 2.

Now. consider the result of speciali/ing the construction f to a particular value for y; say

y- r where r o is a closed term of I.. The speciaied construction may be written.

Suppose that the normal form of t,v -ro1 is 01,(t3) where t. does not contain a free -

that is to say. suppose that t, when norniali/cd returns the decision that F(r 0) and not (i(r O)

57

I. .

- . .. ..... . . ... . .. I I • I I ' I I I I I I " m I I . . . I --



holds, and also that the proof of this decision does not use the assumption B(x). Then the

result of normalizing Xx.{fx,r0 )} without pruning is,

(a) Xx. OF(a,tt,El(rt, # (a)),Fl(r 2,# (t3))): 3zC(x,r0 ,z),

Pruning can be applied to the above expression, yielding

(b) EI(r 2, # (t3)):3 zC(x,r 0,z)

Now, suppose that tj represents an extremely slow algorithm, so that tt applied to any

particular argument takes a long time to normalize. Then the passage from (a) to (b)

represents a large increase in efficiency: the normalization (without pruning) of the

construction (a) on an input r requires that t,[x-rl be normalized, whcreas the construction (b)

supplies the output "r2" for all inputs, and so requires no reduction steps at all.

1-low slow can be t, be? The answer, for all practical purposes, is, arbitrarily slow, since
recursive constructions can "run" as slowly as any recursive function. Even if t i is a
recursion-frce construction, normalization can still take so long as to be completely infeasible.

In particular, there is no elementary recursive function in n which bounds the numer of

reduction steps required to normalize non-recursive constructions of size n [Statman 19771.

(In other words, there is no such bounu of the form 2 n, or of the form 2
(2 n), or of the form

2(2(2 n )), and so on).

So, we have demonstrated point (1) above. Point (2) can be demonstrated using a similar

schematic example. Consider the following proof.

158

'I



I
[F(y)] F(y)DC(xy,r 2) [0(y)] G(y)DC(x.y,r 3)

C(x,y,r 2) C(x,y,r)
12  31- 31

F(y)VG(y) 3zC(x,y,z) 3zC(x,y,z)

VE

3zC(x,y,z)

IA(x)] A(x)DC(x,y,r1 )

D E-

C(x,,y,r t )

n, 31-
A(x)VB(x) 3zC(x,y,z)

VE

3zC(x,y,z)

VI-

Vxy3zC(x,y,z)

The above proof differs from the first proof P1 only in that "C(x,y,r 3)" no longer depends

upon "B(x)". The construction notation for P2 is:

g Xxy. OE(a,t1 Fl(r,#(a))
. O E(J3,t 2,EI(r 2, # (fl)),

E(r-, # (/)))): 3zC(x,y,z)

If pruning is applied to g, one gets

, Xx y. O(/lt2,EI(r 2,#(fl)),
"l(r 3, # (fl))): 3zC(x,y,z)

* Now, stJ)POsC in this case that t I is a fast algorithm, that is, that t 1[x'-r ] can be
normalized in just a few steps for each input r. Suppose further that t2 is very slow. Then we
have the following situation: whenever A(x) holds, rI may be immediately returned as the

output, but when B(x) holds a long computation must be Undertaken to determine which of

F(y) and G(y) holds. lowever, the correctncss of the "long computation" does not depend on

.! 14 whether B(x) holds. Thus we have a fast way (t,) of discriminating between two ways of
computing a satisfactory output, one of which is very fast (the simple return of r,), and the

4 59

r1
p . . I . " - T  '' . ; i : , . . I ! , .,, u.- . -, . t- , . . ,

- - - . .P .. * ,.CIt -•.



other of which is very slow ("Ax y. OF(/,Lt 2,El(r 2,#(J3)),El(r.,#(P))):3zC(xy,z)"). Further,
the slow way always works. Pruning has the effect of throwing away the discrimination (t1 )

and choosing the slow way every time. Evidently, if A(x) holds for many values of x, then
pruning degrades the average efficiency of the algorithm. In the extreme case where A(x)
holds for all x, pruning takes a very fast algorithm and replaces it by a very slow one.

Point (2) has now been demonstrated, and we turn to point (3). As we have seen, all
proofs of larrop formulas may he omitted without interfering with the possibility of
"running" a proof or construction. However, we will show hcrc that the inclusion of a proof

of a Harrop formula can extend the possiblities for pruning. As a consequence, the inclusion
of proofs of Harrop formulas can in some cases improve the effectiveness of pruning in
optimizing algorithms. We consider a third minor variant of the original schematic proof P:

IB(x)I [F(y)V I(x) [G(y)
Al -[3 Al--

B(x)A F(y) (B(x)A F(y))DC(xyr 2) B(x)AG(y) (lI(x)A G(y))DC(xyr 3)
DE- - L __E-__

C(xy,r2 ) C(xy.r3 )
n 2  31 31-

F(y)VG(y) 3zC(x,y,z) 3zC(x,y,z)
V E-

3zC(x,y,z)

IA(x)] A(x)DC(xy,r,)DE -
C(x,,y,r t)

111 31
A(x)V O(x) 3zC(x,yz)

VE-
3zC(xy,z)

VI- -
Vxy3zC(xy,z)

In this case the change from P1 is that C(x~y,r,) now appears to depend on both B(x) and

, F(y). The contruction notation for this proof is,

h', Xxy. Ol(a.tLi(r,#(a))
; ,, Ol:(/1,t 2,1"l(r 2,t3((af?>)),

Il(r3, #(<a,3))))):3zC(x,y,z)

60

! ,, ~ -.

-e-ii i ii . .. -:_ . .. ii l --



... . ..... . . .........__ . • •

We assume for the current discusion that C is a Ilarrop formula. Thus

(B(x)A[(y))DC(xy,r 2)" is a tlarrop foInula, and could have been given simply as an axiom.
Suppose however that (ie proof 113 of "(lB(x)AF(y))DC(x,y,r 2)" has (he form:

Al

11:01 [Il(y)] 11x)J [F(y)AI(y)
Ai- - Al--

tF(y)All(y) (F(y)All(y))Z)C(x,yj2) B(x)AF(y)AI(y) (lB(x)Al:(y)Al(y))D)Cx,y.r)

DE ---- DF-1114

I I(y)V 1(y) C(x,y,r2) C(x,y,r2)

C(xyr 2)

Thus C(xy.r,) may or may not actually depend on B(x): if I11(y) holds it doesn't. and if I(y)
holds it does. The construction notation t3 for the above proof is,

01 (y~t1 , # ((/?,y>). # (, ()Y)) ~~~ 2

So. I has the forn:

I = Axy. O(t, 1 .l((r 1 #(a)
OF(fI't 2, I +I r2,0 I:( yt,4.# (<ft y >), (< a,<fl-y >>))),

Suppose that h is specialized to Xx .h(x,r0), where I (r) and I(rt)) hold (according to
norilalizatioo of t2 and t.1. which yield 01 I(4) and Oil(t) respecti\ ely we assume thatneither t4 nor 1, contains a free). liehn if Xx.h(x . r) is no ri ,lied without pruning tle

fol loving co nstruction results.

Xx. O (qa't ,-n(r 1 .#(a))
'Ilr2, # (<t4t 5M

linally, pruning yields.

F idcntly. if the proof I1, fIr C(x vr) had not been given, there would hate been no
possiblility of applying this last pruning operation. IBy the same argument given above for
point (I), this pruning can lead to a large increase of efliciency.

61

________________________,____________- ,&.' .i



Thus, although proofs of -larrop formulas are not required for the execution of a proof,

they can be used to improve the analysis of dependencies upon which pruning relies.

6

4 :, 62

i'



Chapter 4

Specialization of a Bin-Packing Algorithm

The experiments described in this chapter demonstrate that prunable redundancies occur

in the "real" computational world. The experiments concern the specialization of the first-fit

backtracking algorithmn for one-dimensional bin-packing. This algorithm takes a list 1 of

block sizes and a list 12 of bin sizes as input. Each block and bin is "one-dimensional" in

the sense that its size is given by a single positive number. The algorithm performs a depth-

first search for a packing of the blocks into the bins - that is, for an assignment of the blocks

to the bins with the property that the sum of the sizes of the blocks assigned to any given bin

is less than the size of that bin. If such an assignment is found, the algorithm returns that

assignment as its result, and otherwise it returns an indication that no packing exists. The

algorithm is referred to as a "first fit" algorithm because, in the course of search, it attempts

to place a block in the first bin in which it fits as its initial try. The bin-packing problem is

well known to be NP-complete [Garey and Johnson, 1979], and this particular algorithm has a

worst case running time which is exponential in the size of the input. However, the problem

is tractable for small inputs. It is of interest to see how much the algorithm can be sped up in

the cases where the inputs are of feasible size.

The bin-packing algorithm was formalized as a natural deduction proof in the first order

theory of lists and numbers, and an untyped p-calculus term was extracted from this proof.

The proof was constructed "by hand", but the extraction of the p-term from the proof, and all

other phases of the experiments, were carried out automatically by a system of proof

manipulation prograns running oil the Stanford Artificial Intelligence Laboratory PI)P-10

computer. Several experiments were carried out, each of which involved specializing the

j algorithm to handle problems of a plarticular size and structure. For example, a specialized
algorithm for packing six blocks given in order otf descending size into three bins of equal size

.j was derived from the general bin-packing algorithm by the following steps. (1) The p-

calculus term which describes the general algorithm was executed (nornialized without

pruning) on the symbolic inputs .l1 = ,<it,i 2 ,i3 ,i4 ,i5 ,i6 >>, 1.2 =<n,n,n> , where the i and n

are numeric variables, and where it was assumed further that il2i2 _> ...>_i6. The resulting

p-calculus term had the form of a decision tree. (2) The decision tree was subjected to an

optimization involving the elimination of case analyses whose outcome was decided by

t, 'ormulas already assumed on the branch so far taken in the tree. '[he optimization was

carried out by use of the simplex algorithm (all the case analysis predicates in bin-packing

Al have the forin of inequalities between sums). The process so far could as easily have been
carried out on an ordinary program as on a proof or p-calculus term. However, at stage (3)

pruning was applied. The question of central interest was this: what increase in speed and

reduction in size would be obtained by the application of pruning?

63

d~

I~



In practice, it was not feasible to carry out steps I and 2 separately, since the decision tree

resulting from step I would have been extremely large. Instead, normalization and

optimization were applied "in parallel" - the decision tree was optimized in the course of its

construction.

Experiments of the kind just described were carried out for all combinations of numbers

n1 of blocks and numbers 12 of bins with 2<n2 <l..6. In all cases, pruning turned out to be

a useful optimization. As an example, we consider again the case where hi=6 and n2 =3.

The decision tree which results from steps (1) and (2) has 87 decision nodes and a depth of
14. When pruning is applied, the tree shrinks to 15 decision nodes with a depth of 8. 'lhus

more than 4/5 of the decision nodes in the decision tree resulting from steps (1) and (2) are

redundant in the sense recognized by pruning. If one measures the running time of a bin-

packing algorithm by the number or comparisons which it makes, then the worst case running

time of the original algorithm on inputs of the special form currently under consideration is

174. The worst case running time of a decision tree algorithm according to this mcaeure is

simply the depth of the tree. Thus the simplex optimization and pruning taken together

produce a factor of improvement of nearly 22 in worst case running time (from 174 to 8).

As mentioned in section 2.8, pruning may have the effect of changing the function

computed by a proof. Pruning does in fact have this effect in each of the experiments

described in this chapter. Furthermore, this effect is essential to the success of pruning in

improving efficiency. For 2<n2<nt<4, the algorithm produced by pruning (in combination
with symbolic execution and the simplex optimization) is both smaller and faster than any

decision iree algorithm which computes the same funcliou as the originlal algorithm. (This is
may be true for nt=5 and n=6 as well, although this has not been checked.) Tihus, no

collection of conventional optimizations could have produced specialized algorithms for bin-
packing which are as eflicient as those produced by pruning, since conventional optimizations
preserve the extensional meaning of the programs to which they are applied.

The following conclusions can be drawn from the experiments. (1) The simplex

optimization with or without pruning yields a large speed-up of the algorithm. (2) Pruning

dramatically decreases the size of the specialized decsion tree algorithm, and produces a

moderate improvement in its speed (ie depth). (3) The improvements produced by pruning

could not have been produced by conventional optimizations. In the largest experiments
(where nl=6 and 112>4), it was not feasible to produce a decision tree algorithm at all

without the use of pruning; pruning had to be run in parallel with the simplex optimization

and normalization in order to avoid running out of memory space. Thus in this application,

the main practical effect of pruning was to make possible the production of fast specialized

algorithms which are of a reasonable size. In devising combinatorial algorithms for handling a

F64



finite number of cases, speed is not the only problem, since onc can often make use of table
look-up to get a very fast but very large algorithm. What is difficult is to produce an

algorithm which is both small and fast.

InI what follows, we describe the experiments in detail. Section 4.1 concerns the system of

programs used for doing the experimcnts. In section 4.2, we describe the proof which

implements the bin-packing algorithm. Section 4.3 concerns the reductions on object term

used in normalization. Section 4.4 gives the results of the experiments. Conclusions based on

the results are given briefly in section 4.5.

4.1 The implementation

The system of programs used for the experiments was written in MaclISP, and runs on

the Stan'ord Artificial Intelligence Iaboratory Pl)P-10 computer. The system consists of three
components: (1) a proof checker for natural deduction, (2) a mechanism for extracting

untyped p-calculus terms from proofs, and (3) a normalizer (with pruning) for the p-calculus.

The proof checker is interactive, and allows the user to specify the first-order language in

which a proof is to be given. In these respects, it resembles the FOl. proof checker

[Weyhrauch 19741.

The normaliier, both iai internal design and in funcLion, is very mouch like interpreters for

X-calculus based languages such as LISP[McCarthy et al. 19621 and SCIIEMl[Sussnman and
Steele, 19751. The execution of a I .SP or SCIIBMF' program is essentially a matter of

normalizing a closed X-calculus term which ends up with an object term as its normal form.

In [he case of SO! IFMB. where the static binding convention is observed, the interpreter has
e.xac/iIy the eflict of a h-calculus nortnalizer when applied to a closed term having a "concrete

value", whereas in most standard dialects of I.ISP (eg LISP 1.6. MacI.ISP, Interl.lSP),

dynamic binding holds sway, leading to a somewhat different behavior than normalization.

In any case, there exists a well developed technology for efficient normalization of some kinds
of X-terms, and this technology is easily adapted to the task of normalization in the p-calculus.

A central elenent of this technology is the use of environments for implementing
substitutions. The idea here is this. An environment is an association1. .t I).(x2 ,t 2) . . . (xn't,) } ' of telms with variable names. Il' one wishes to evaluate (or

I nornali/e) i term which is given as the result of t fx-, of a substitution, then, instead of
doingo the sulhstitt ion first and the normalization afterwards, one normalizes the tern t, in the4 ,enviom,ent I(x.t2)1. The normalization of a ternm t in an environment e is like nonnalization

f of the usual kind, except that variables which have been assigned values in the environment
are regarded as temporary names fior those values. Most reduction rules applied in the course

65

-mod



of nomalizing t do not make use of the internal structure of the subtenn which a temporary
name designatcs: on occasions when this internal structure is relevant, the value assigned to
the name is looked tip. We won't go into further detail about how environments are used:

the reader who is unfamiliar with these techniques should see [McCarthy et al, 19621.

Our normalizcr uses environments in the implementation of V-reduction, D-reduction.
V-reduction, nd 3-rcduction. The normalizer resembles traditional interpreters in the
additional respect that a "call-by-value" reduction order is used. That is to say, except for
terms whose main constructor is APPIL. OF or FE, a term t with immediate subterms
11. t n is normalized by first normalizing each ti. and then applying reductions to tile
result. In the case of (1) APPLIY(t[t 2 . . . tn) . (2) Ol(a.t1jt.t). and (3) I'l(x.a t.t 2), tt is
normalized first. If t, has the forn (l)Xv.t, (2) Ot(t) or 012(t), (3) l(t.t'), then (I) t, (2) t2
or t3, (3) t2 is normalized in the extension of the current environment which associates (1)
t2 . . .t with v1 ... v. .vw (2) t with a, (3) x with t and a with t'. If t, does not have the
appropriate form to allow a reduction rule to be applied, then t2 . . . ti are normalized in
sequence.

The normalizer is an iterative program in the style of the SCltEME interpreter [Sussman

& Steele 1975]. A collection of (software) switches controls the mode in which the normalizer
operates. For example, the pruning reductions and the permutation operations can be turned

on and off at will. Proof procedures (section 2.5) are implemcnted by calls from the
normalizer to ordiniry ILISP functions. The entire system, including the proof checker, the
extractor, the normalier, and a top level, constitutes about 900 lines of MacI.ISP code, and
when compliled occupies 70,000 words 36-bit words of memory. The former figure includes

only the code which was written by the current author specifically foir the proof manipulation

system. It does not include the code contained in the two "packages" %hich were imported
into system, namely a general purpose pretty-printer written by I)erck Oppen (see [Oppen.
19791) and a simplex algorithm written by Greg Nelson. The figure of 70.000 words, however,
measures the total anotunt by which the size of the proof manipulation system exceeds that of

"bare" MaclISP.

66

,'4



4.2 The proof

The bin-packing proof uscd in the experiments is formulated in a first order language L0
for numbers and lists of numbers. 'There are two sorts of variables: variables which range

over non-negative integers, and variablcs which range over lists of non-negative integers.

(Note that the use of sorted variables whcre the sorts are disjoint has no effect whatever on

the treatment of proofs as computational descriptions; in normalization and the extraction of

p-terms, the sort inforination may be simply ignored.) In what follows, lower case letters are

used for numeric variables, while capital letters are used for variables which range over lists.

The function and relation symbols of I.o are listed below, together with their intended

meanings. Note that some of the symbols are given as infix operators. Any language

definition supplied to the proof checker includes information as to which binary function and

relation symbols are to be treated as infix operators by the parser for formulas and terms.

Our usage below directly reflects this syntactic part of the formal defintion of I.0.

symbol intended meaning

+ n+m is the sum of n and m.

i-nin is the result of subtracting in from n.

< n<tn holds if n is less than in.

< n<m holds if n is less than or equal to m.

loth Inth(A) is the length of the list A

it a ) A is the list which results fromt adding n to the front of A4
A:n is the nth element of A (it makes no difference for our purposes

how A:n is defined for n= or i > lnth(A))

tl tI(A) (read "tail of A") is the result of removing the first element

from the list A; the tail of the empty list is the empty list.

set set(A.n,m) is the list which results fromt replacing the nth element of

A by i. If n=0 or n > Inth(A) then set(Ajnm) is A.

It is most convenient to think of L as having just one list constant, namely for the

empty list. and infinitely many numeric constant symbols: one for each number. The numeric

constants (numerals) are represented in a direct flislion in the implementation, namely by

- 67

/7



L.ISP numbers. The parser and the programs which print out proofs and p-terms use

ordinary decimal notation for numerals.

We will abbreviate a term having the form "t, @ t2 @ t3 @ . . . tn @ " by

>". Thus ti in <t1 ,t2 .... t>,- denotes the ith element of the list denoted by

<¢tt~t2 -... tn>. The parser and the output programs also use this notation (in fact, tile same
kind of abbreviation is used in the internal representation of terms). Also, "null(X)" will
serve as an abbreviation for "X= <>".

We can state the one-dimensional bin-packing problem in the following way. Suppose
that we have n blocks and in bins. Each block and each bin has a particular size given by a
positive integer. Let X = i1.... i P> be a list of the sizes of the blocks, and let B = <Jl,

... jq > be a list of the sizes of the bins. An assignment of the blocks X to the bins B will be

represented by a list <k. . k p, where km is the number of the bin to which the mth

block is assigned. For example, {2,1,1} represents an assignment of three blocks to two bins,
where the first block is assigned to thc second bin, and the remaining two blocks are as.signed

to the first bin.

Now, an assignment A = ,<k.... kp> of blocks X to bins 11 is legal if each block of X
is assigned to some bin of B (ic if lnth(A)=lnth(X), and km <Inth(B) for each m), and if the
sutn of the sizes of the blocks assigned to any one bin is less than or equal to the size of that
bin. The one-dimensional bin-packing problem is this: given lists of block sizes X and bin
sizes Y, determine whether thcre is a legal assignment A o1" the blocks to the bins, and if there
is, give it.

The algorithm for bin-packing which is used in the experiments is as follows, expressed as

an ordinary delinition by mutual recursion.

pack(XB) - if nuIl(X) then <> else packb(X,ll.l)

packb(X,Bn) if n<lnth(B) then
if X:l<l1:n then

if pack(tl(X),set(lIn,B:(n - X: I))) FAll. then
(n ( pack(tl(X).set(ll,nli1:(n - X:I))))

clsc pacA-l(X,IB,n+ 1)

else IAIL.

else FAIlo

An informl explanation of the workings of this algorithm is as follows.

68

-Jr



[hle function pack takes it list of' blocks X and binls It and returns either a legal
assignment of thle blocks to thle binls, or ['All .'. meaingy that there is not packing. Pack first
check% whether there are any blocks (ie %~hether X is nuill). 11' not, then thle nutll assignmllent
%% ill do. Othie-N ise, thle function packh is called %kith thle bound it set to 1. lin pacAk!iX.n) it
utlay be assunled that X is nonl-emplty.

Ihle "bouinded" pimcking fuinction pack 1' attempts to find a packing~ of' thie blocks X int'o
tile binls It Subject to a restriction on %%here thle first block lin X nav be pult(: namely. the first
block nmust be assigned to a bin " hose index is nt or greater. PckAb first checks M'cl hethe is
greater than thie length ofI H: if this is thle case then nio packing " hich satisfies the gi~ en

restrict ion is possible. Othlevise. patck!' chiecks M hether thle first block fits inl the lith binl ie
%ttlhet her X :1 <11:0n. If* tile block fits, then ii i at tenmpt is im ide to pal'k thle rest of' thle blocks
into thie spa1ce Muhch relmins inl thle binls: speci ticAll I~ (ftf ) ' is called, Where
11' set( H.1n.H:-A - V:I)). It' dif'fers If'roi It inl that thle sue of' thle nth bin has been reduced
to rele- te assignment of' thie first block to that b11n, It' such a p.ickin11 A oft' tl(N'f into It' is
f'ound, then it W, A. C% idenitlh Sn fices as a paclking of' \ inito It. l'ial . if' no packing of' fl(X)
Into H1' 1.; pos;sible, or. if' V:I did not fit into H1:1 inl the first place, then pack/'j\.ll.n 1 I) is
called. Hills, thle end elect ewcuu tng pc! N1.)is that thle first block NA: is placed
sktcl nt (l i tfirSt binl inl \ Ichl it fits, thie second N inl \0hich it fits, and so onI. until a
f'LIL-icllh'nf1 of" VI: is founlld \\ IhCli ane estendled to a complete Ivtcing (of' X into 1H, or until
not bins., are left.

Note that theie ire I", identical caills ito pack inl the bodl\ of' ''ack. Ihlis duplicaition ot'
ef1f0rt could eaisil\ h1.1w been ef~iltinied b\. the use oif'a N-abst ract in, but this ",as not dtonle
f'or thle saike of', siilphl\i t'~ of pesenl(tton. [hle kil icat ion does not1 apeill intc bini-packing

proof.

['lie biii-packinio proof' his t~~w pmiits: a '1m11in flicoiit' PAC'K. id a leini PAC\(IH

l-oritlli. " 'PACK'' and ''PA('K1 II' ie ito be regarded as deinmed s,\nibols oft' thle language I
to \\ hichl "ieeulrsk~e" proof's haw~ beenl a1Signedk accordinig to lte i tiles igiken inl sction 3.4.
I i ese I i ' s co rresp oi d cli se lv In st ruite Icto thie ic i rsze de init ion s pack and pack b: the

proof's ci n bo d% the samel a it al sis of' Cases, alid t li sm ile pitt emri o I' tee Luisie callIs ' inl short,
thie saute .1ilgorltin1 - als do , c and packh' I isfings oft' PACK .ind P.\CII .ire giwen below
Inl the form11 In \\ hichl t lo \Sere prinited out bx thle proof, checker. ['lie notaition ulsed by thie
proof01 cheAcr is sonile% limi 1tin1utli and \\ill be exp11lid shltl\x,1Ha first(, here is the listing
oit PACK,

.' '09



I NUIIX) till (X)V (Ill II(X))
2 AS(null(X)) .1)) null(x) 2

4 FV(*2) X= 4> 2

5 SII(*4.*3(lI).2) lgI',X1)2

6 FI(4 >.*5,3A(Iega(AX.1))) 3Aka(.~l)2
7 AS(71ni..lX)) 1lnuIl(X) 7

8 PACK3(XH.1X4*7) 3A(III A(A.X,1J))V(13A(IU .A(A.X.Il. I))) 7
9 AS(3A(III.A(AX.H.I))) 3:\(lB A(A.X,11.l)) 9
10 EV(*9) 3:\(Iegiit(AX\II)A(ItIl(X))A(I <(A: 1))) 9

11 AS(Iegail(,Xl)/\(lnIii(X))A(l <(A: 1)))
legal(A.XBl)A(1nuIl(X))A(l <(A: 1)) 11

12 [i11411 lea(.l)11
13 1IA. I .AlglA. 3l A(legal(A,X,B)) 1

14 14 10, * 13A) 3:\(legal(A.' .11))9

1S AS(-13.A(I A(..\.NII))) -3.(BgAl(\A)V(XlB,AXII)) 9

-13A(legaI(Atw3X1)) 7.1

18 (0l(3.Mle-.al(A\Xl1)), 7) 3.lglA\lfV1.(ea(..)) 7,1

22 X\ lI(*21 V\ Ii\lglA\l)V1AlglA i))

Fis 'e con mc n Ci oil m p red ic.1C Il' i ols h ic Ii ap pear ill hle allow limting. The

(61-1111l. legal( A. N I) holds dl . is a leral iisiment ot the blocks X to thle bills It. With a
bit of' \ork. "Icegal" can he definled from thle pr-inmiti\ e operators and predicates of 10 Which
'Acre 1'iC en ahm . but there is not reasonl to do So here. For thle current purposes. "legal" is

treated as p ri iiit i . The flilitt11 Il l .\(AAN.11.mi) holds ift A is at 'legal houmnded assignment"
of thle kind th't 1'atAbI' iiht generate - that1 is to Say at I"11I assignmen~~It of a nion-emlpty list X

of blocks to binls It "hInch assivns the lirst block to a binl Mhose index is at least nt. IWA is

used as a defined predlicaite: its deliimi is

70



thle above listing should be regarded as a "linear" notation for a natural deduction proof

tree of thle kind discussed inl chapter 2. F.-ch line of thle listing designates at node of' the

tree. A line hias fibur pieces of intlbrmation associated with it. Reading from right to fell.

these are (1) thle line number, (2) a term, (3) a ibrinula. and (4) a list of dependencies. 'Ilie
linle numbers serve simply as unique labels whiichi are used to identify thle linle inl question.

[he termn indicates thle the sequence of inf'erences by which thle current line was arrived at

trouI [ire% ions% lines of' the proof. th'Ie formula11 is sinl)I ile th fornuila associated k ith dhe nlode

Ii thle proof tree which thle line designlates: it is thie Conclusion of thle iniferences which hlaw
been completed thus far. Finally, tie list of' dependencies is a list of' thle line numbers of the
assumptions upon \% hichl thle Conclusion of' the current line depends. Ini thle interactive

Construction of, a proof, thle user t\ pes a terin of' thle kinid suitable for thie temIl part (2) of' a
proof .line: thle proof checker then assipns a niew line number and computes thle t'ormula' and
dependencies of* the new linec.

[is method of, Il ing oult a proof' tree inl bnc~ir tashion is of' course quite standard. T he
on I\ tin i sual aspect Of thle n1oLttion is thie InI Iincer inl \\ h ich tl e a1pplicationl of' in f'erence ruiles
is described, thlis nrimto.as \\e hat e said, IppCIrs inl thle f 0rn11 of' thle term \\hIchl is thle
seconld P'lirt of, e\ er,\ proof, step or linec: this term reseombles a p'teiii inl sew ral \%a s, and \% Ill
ble caIlled al Aqtri' .*\ -terml is bulilt uip f'roim I\iklmls and as,;IImptions andt from,1 ref'erences
tit p re iolis lines 1,. t ile a pplikcation of' opera101- to u iL'i h represent in f'e rIe neriules. AnI ax ioml is
is gi'e'i M~ a1 k-teriu ol fte tbnnm 'A\(TY) Mihe 9, is the fbrmunlicing assecrted as ani axioml

(see ine 3). \\hil Ii anissumption is thle I l .\S(9') (see line 2). Ret'rcnices to pre\ ionls

PrVof VS tesake the l011i of' al Iisto risk fbi lo ~ d bN the lilne inmber of' thle step). '[he
operatOrs \%Ihicli represent inference rules aIre: PAIR t'Or A -introduction. IiNPA IR fbi' A-
elimination. 01 fbr1 \-iitr'Odnction, oI: for V-elimination. 11 for 1)-introduction. APPI Y f'or
1)-ehliinationl 'mid V-eliminwiion.,\ a bstractionl tbrl V-inltroduction. 1:1 f'or 3-introduction, and

finil.l1 SlB fbr1 suikuitiitionl (01f ''right 1f0r le;'t. thle s\It Ota ofIq-termls is 1.1rgelv boromc d

f'rom thle S\111.1\ \dliic %\c haw been us"ing 1f0i p-termis; f'or euanuple "PlAlR(t ix )0- is " rittenl
I'C.t$" Q-termsl' dliter f'roun p-terns in thle sionlifcant aspect Ohat no proof, arialbles are

ii ed : .1 I ternl is; ilO Iilr 11ic h11 a fira 1i ilenit of' ai od ni 01(11,1 aItL FIIra ded~~l Mi ro'wit C n inl

* ' ~ ~ ~ aplimci i me i tax.iA,; a Simiple e\.iiuplo of' a1 ki tI'rin. consider tile term part of' line 11) of' thle proof PACK,
%% Inch~ re~ld\ fi?.1)' 111 klnd~guates the reCslt of' appl1) ingV V-ehliiationl to thle

.1 piciI~c~ ipie~eitc h\ l'' ies I .111d 1I rpCItel\ . A mlore 'oimplicated euample is the

termI pirt1 if ine S. V's n \ii l e ilte "\iit.l\ "t11t10' f'or A\PI W t'). APPI Y. inl turn is
u1"cd to dcI'sIigtc both the V elmlintiionl .11d D-liniui~itIlionl Inf'erence rulles. Hlls a If-terml of

thle 1,4111 t(t t. i 'fc~ilnutc" cithci Ili V chlintuonl or anl 1)-eliminationl rutle, under thle
conition01 t1hat C not ilf I itnclctikh c ~ in itin. No"~. the tenn part of linle 8 is

4



S"PACKI X,B, IX*7)". PACKB is the lemma which corresponds to the bounded packing
tfunction "packb", The endfornnula of PACKII is

VX 1 n('lnull(X)D 3A(IBI.A(A.X,I.I ))V(13A(BI.A(AX,BI))))

'The formula PACKB(X,B,1) designates the result of an V-elimination with PACKB as
the premise, followed by an D-elimination with line 7 as the minor premise. Thus two

inference rule applications are described by line 8 of' the proof. In general, one can record as
many inferences as one desires in a single line of proof by the use of a suitably complicated q-

term: the decision as to how much inftrrmation is to be included in each line is a matter of

convenience.

What we have said so tar should make at least a rough understanding of the proof PACK

possible. An informal outline of the proof is as fbllows. First of all. the proof takes the form

of a case analysis according to %, hether \ is null (see steps I and 20). Steps 2 through 6. and

step 20, take care of the case where N is null. If X is not null, the lemmina PACK H i. used
(step 8). Steps 9 through 19 are devoted to showing that

JA(Icgal(AX, ll))V(-1 J:(legaI(A,X, H)))

can be derived from

3A(Bl A(AXlI.1))V(13A(lI A(A,X,1,,I)))

This is done by a case ,mal sis (step N9) accordillg to thther 3A(BI A(AN.I,1)) is true.

The outer case analksis of PACK - nan l v the case analysis according to \ ltether Xis nlll - is

reflected directly by tile conditional e\pression "if null(N) then <> else pwacktXII.l)" in the

ordinary recursi\e defintion pack. Ilo\ \er, the imcr case anal.sis \hich lis just been

mentioned is necessary only in order to demonstrate th,lt the \aloe reCn rud by ,,ckl(X, , 1)
is also a valid output for pack no counterpart of this caise analysis is present in the ordinary

recursive defintion.

I.'u rthcr infori nation concernitrg the notation used by the proof checker, and concerning
the prools PACK and PACKII, is gi\cii below. Nonie of this int'oriation is of any general
sign ificaiice: our cliltent purpose is to p roide the detail teccss N 16r a full .tep-by-step

uiideistrinding of' the proofs PACK and PACKII.

0 One le i a other than PACKII appears in PACK. namcl\ NU 1. 1) (itle T) 'lhe

''endforriula" of N!II .11) is VN(iltl\)V lnull(\)). A proof procedure for NUll I ) is

sulSplicd as part of the tuler: N UI I I (t) returns,€ 01 (f) if t is " ," and 01,( #) if t
has the foni ".'t1 ... tN-" ,whle 11>1. Also, the leImim I II) alppeasl il PACKII. The

[4 72

"'''---'

• • - - I I I I • I I II I I I I II H I I -I5



endformula of TEI) is "n m(n<mVm<n)"; the proof procedure IlF.l(tt2) returns
OIP() if ttlt2 arc numerals with tl__t 2, and 01 2(#) if t1't 2 are numerals with t2<t, .

The operator "EV" has the effect of removing abbreviations in the endformula of a

proof - that is, of replacing defined predicates by their definitions. Two defined predicate

symbols appear in PACK, namely "null" and "BL.A". These symbols are removed by EV in

lines 4 and 10, respectively. EV should not be thought of as an inference rule, but rather as

part of a facility in the proof checker which allows formulas to be given in an abbreviated

notation; from this point of view, [V has the effect of changing the external form in which a

formula is presented to the user without changing the tbrmula itself. Evidently, uses of EV

could be dispensed with in any proof simply by replacing all abbreviat~ons by their definitions

throughout the proof. The procedure which extracts p-terms from proofs ignores uses of EV;

that is to say, the term which is extracted from "FV(fl)" is the just the term extracted from

"[1". Similarly, the operator "FVQ", which appears in PACKB but not in PACK, is used in

conjunction with SB to introduce abbreviations. EVQ is applied to a formula rather than a

proof: FVQ(cp) produces a proof step whose "formula" part is "q 4", where 4' is the

formula which results from removing the abbreviations from q. However, "(p= 4' should

not be regarded as a formula but rather as another artifact of the abbreviation facility. The

operator SI may be used with "q =4" as its first premise in order to substitute the

abbreviated form q) for the expanded form ' in the enformula of its second premise. EVQ

and SB are used together in this manner in steps 14 and 15, and steps 28 and 29, of PACKIB.

Again, these steps could he removed by replacing all abbreviations by their definitions

throughout tile proof.

There are two variants of the V-introduction :nference - one put,; tile "new" disjunct

on the right, and the other puts it on the left. The corresponding forms of an application of

the "O" operator are: (a) 0( l.F), and (b) O1(1-,I1), where Ii is a proof, and F is a formula

(F is the "new" disjunct). More explicitly, let us suppose that the endfornula of 11 is A.

Then the endf'ormulas of the proofs which result from the two forms (a) and (b) of 01 will be

AVF, and FVA, respectively.

0 An application of the "II" operator for 3-introduction has the form "El(tJI,3x(P),

where t is a term of I., Hl is a proot, and 3xq) is (of course) a formula. It is assumed that the

endl formula of' II has the f'rrm qIx *-ti: otherwise the proof checker will reject this application

olf FI. 3 xq) is the endformula of the result of' the application.

° In PACK and IPACK I we make use of the connectives "A" and "D" as operators of

arbitrary arity. That is to say, just as we hlie dlowed "V' to quantify over not just one, but

arbitrarily many variables, we Allow l'oritlas of" the forins JA, A2' A D 11, and of the

73

I'
p f-



IT

form IA1AA2A . An, where each of these is to be regarded as the result of applying a

singlc high arity connective "D" or "A" to A, . .. A,, and in the first case B. The meaning
of (At , A2. . . An 3 11] is just (AlAA2A ... An D) i). Trhe inferece rules which treat A

and 2 are modified in a suitable way. Namely, A-introduction now takes as many premises

as desired and produces the conjunction of all the premises as its conclusion.

Correspondingly, one needs a separate variant of A-elimination for selecting each of the

conjuncts of a high arity conjunction. The q-term notation for A-introduction is
"I .. aY'. For A-elimination, we have "[Fil1" to select the first conjunct. "[171421"

to select the second, "[143]" to select the third, and so forth. ("[1 kI" corresponds to "7rk"

in the notation which we have been using for p-terms). D-elimination also takes as many

arguments as are appropriate to its major premise; in q-term notation we write

"[1(1il , -12* i n)" to designate the application of' D-elimination to the the major premise

n, and minor premises n . n2. .' Hn" It is assumed here that the endfornmula of 1I has the

form [At A2 .. . An D 1I, where A1, A2. . . An are the endforniulas of ip ] 2. I. .I l ,

respectively. The conclusion of this D-climination inference is It. For an example of tile use

of D-elimination of arity 2, see step 17 of PACK. The use of arbitrary arity connectives

constitutes an inessentiail but convenient extension of notation.

A listing of the proof PACKB is as follows.

I AS(Inull(X)) 111(x) 1

2 iTl'l){n,lntt( B)) (n_<hnth(lB))V(Inth(l)<n)

3 AS(n<lnth(1)) n1<lnt(B) 3

4 I .TI:1I)(X: 1,11: n) (X: I <(I: n))V(B:n <(X: I))

5 AS(X:I <(It:n)) X: I(B:n) 5

6 PACK(tI( X).sct(I1,n,B:n - (X: I)))

3lA(Icgal(A,tl(X),sct(ii,n, B:n - (X:I))))V
(1A(Ilcgal (A,tl(X),set(il,|,ll:ii - (X: 1)))))

7 AS( lA(legalt AtI(X),sct(lnii: n - (X: 1)))))

3A(lcgal(A,tl(X),set(B,n,B:n- (X: 1)))) 7

8 AS(lcgal(A.tl(X),sct(ln,13: n -- (X: 1))))

Icgal{A~tl(X).sct( B,n,l(:n - (X: 1))) 8

9 AX(VA X It n(Ilnull(X),n<lth(B),X:l <(l:n),

Iegal(Atl(X),sct(BRn.1:Wn -(X: 1)))

D) legal(tf'A,X,IIel)
VA X B (lniull( X).n <lnth(lB),X :1 "(B:n),

• legatl{A~til X ).set{ B, n, B: ni - (X:lI)))

10 *9(AXI, n)(* 3,*5,*8) Ieegzi(n(@ A,X, B) 1,3,5,8
I AX(Vn A(n<(n(aI'A:1))) Vn A(n<(n(uA:I))

F74

_ meow



12 *1In10) n (nVWA: 1)

14 VVQ(lII A(n(Y'A.\ ,n))
III A(n0WA.Xl1m)

15 Sll .(* 14,*13) III A(1lcgIa iiX t, 1 )A 8,5.)At A 1

10 FAI(Y'AX* I5.3A(lllA(A..\. 11,1)))
3A(BlI A(AX.11l,1)) 8,5.3.1

17 1:1l(7.*1) 3A(III A(,A.X,.U)) 5.3.1.7

],\(ll (A.~lln))(1I(IUA(A.XBi.f)
5,3.1.7

4~~ VI(VI~ 11( 1).Z~ <n

(B A(A N~ II)( O)Vl(IA(l (A))41))

1. 1 *1: 22) ]IIl A(A.XBl.n) 22V1ABA(ABnIM

32 OI 3.1.A(AA,13V.\M

].\(ll 11))22

?3 .S(B 1I\( l\ A,\,B l I I \( ,,B l1))2

75

4 - .23



-7___________ .~----- ......
4 --

13A(IILA(A,X,B,n+ 1)) 35

36 .FMO(X,B,nX*19,*35) 13A(BLA(A,X.B,n)) 19,35
37 OI(3A(Il.A(A,X,B,n)),*36)

3A(BLA(A,X,B,n))VflI 3A(BLA(A,X,B,n)))

19,35
38 OF(421,*32,*37) 3A(BI..A(A,X,B,n))V(1l 3A(BI ,A(A,X,B,n)))

1,19
39 OE(*6,*1I8,*38) 3A(BI A(A,X,II,n))V(1l 3A(BI .A(A,X,I3,n)))

5,3,1
40 AS(13:n<(X: 1)) B:n<(X:1) 40

41 PACK[3(X,B,n+1)

'lntIll(X)D
3A(IA(A.X,B,n + 1)) V(13A( BI .A(A,X,B,ii+ 1)))

42 *41(*l) 3A(IA(A.X,B,n + 1)) V(1J3A(BI.A(A,X,B,n + 1)))

43 AS(-13A(IIL.A(A,X,B,n+ 1)))
-13A(BL.A(A,X,B,n+ 1)) 43

44 1 .EM I(X,B,n)(*1.*40.*43) 13A(BL-A(A,X,B,n)) 1,40,43
45 OI(3A(IA(AX,B,n)),*44)

3 A(131,A(A,X, B,n))V(-13 3A(I A(A, X, 1, n)))
1,40,43

46 OE-(*42,*32,445) 3A(BI.A(A,X,1I,ii))V(13A(131.A(A.X,1B,n)))
1,40

3,1
48 AS(Inth(IU<n) Inth(II)<n 48
49 I.INA2(X,I,n)(*48) -13A(IA(A,X,B,tl)) 48
50 OI(3A( DI.A(A,X, Bjn)),*49)

3A(BI .A(A,X,13,n))V(13A(IIL.A(A,X,1B,n)))

48

52 ll('lnull(X),*51) Iiitill(X)D3A(I IA(A,X.I1,ii)) V(13A(I1I .A(A,X,1IIin)))
53 AX 11 n(*52) VX 11 11(1nill(X)D)

f4 76



. .

4.3 Reduction rules for terms of 110

The following special purpose reduction rules for terms of L0 are provided as part of the
normalizer (reductions on object terms were discussed in section 2.6). We will not belabor the

distinction between numerals and numbers; for example we will allow ourselves to use the
phrase, "the sum of t, and t2", instead of the more precise phrase "the numeral which denotes

the sum of the numbers which tt and t2 denote" in the case where t, and t2 are numerals.
However, special variables, namely, a,b and c, will be used for numerals.

"a + b" =: "c", where c is the sum of a and b.

"a - b" - "c", where c is the result of the indicated subtraction.

"Inth( <tt,t2, ... tn>)" = t' where t' is the numeral for n.

tl( 4 tt,t2, . . tn >) =: ,<t2  . .. . tn >'

.t .... tn:a = ta, under the condition that 1<a<n.

set( t1 ,t21 . . . tn>,b,to) = t', where one of the following conditions holds: (a) 1<b<n
and t' is the result of replacing tb in <t,t 2, . . . t> by t0, (b) b=0 or b > n, and e is

i , <tlt 2 . . tn>.

For example, these reduction rules would have the effect of reducing the term

"<3,4+5>:2" to the term "9". It is not hard to see that normalization of any term of L0
with respect to these rules will terminate, and that the normalization of any closed term will

yield either a numeral, or a term of the form <t 1,t2 . . . tn>>where the ti are numerals.

4.4 Results

The results of the experiments will be presented in several stages. The p-terms which

were extracted from the proofs PACK and PACKB will be given in section 4.4.1. In section

4.4.2, the results of the smallest of the experiments are given in full detail, and the simplex

optimizations are described. Section 4.4.3 presents the optimized algorithm for packing six

blocks into three bins. Finally, section 4.4.4 tabulates the results of the remaining

experiments.

4. 77

'-• 4



4.4.1 P-terms

The following p-term was extracted from PACK:

ppack=

AXB
(OE (a2'

NULLD(X)0O1(1, EI(S B(a 2, #(13)), <>))
(OE (a4)

PACKB(X,1,1)(a2)
0I(I,EE (a6 A) a4 El([a6, l,A))
01(2, #(X, B)(a2,a4))))

The notation used for p-terms in the implementation differs in several minor ways from
the notation which we have found it convenient to use in our exposition of the p-calculus in
chapter 3. (1) In the implementation, we write "01(1,t)" and "Ol(2,t)" instead of "01(t)" and
"012(t)". (2) As explained in the last section, we now allow "pairing" operators of each
positive arity; arbitrarily many terns t1 . . . t n, can be "tupled" together into the term
<t.. tn>. Corrcspondingly, there is a projection operator w k for each positive integer k.
Instead of writing "k(t)" we write "[t4,kJ". Note that k must be a numeral; [t.], [421....
are to be regarded as notations for separate elementary operators of the p-calculus. ("$" is
not a function symbol!) We remark once more that the use of arbitrary arity tupling instead
of iterated pairing is no more than a notational convenience. (3) The order in which
arguments to the operator "El" appear is reversed; a p-term "EI(t1 ,t)" as expressed in the
notation of chapter 3 is written as "F(t 2,tY)" in the notation of the implementation. Thus, in
a construction "H(t 1 ,t2):3x" in the new notation, t, is the construction for q)(t 2 ), and not the
other way around. (4) The numbers which play the role of subscripts to variables appear
simply to the right of the variable name rather than to the right and below the variable name.
Thus, we write "il", "i2", "al", "a2" and so forth, instead of "i1 ,i 2 ', "at", a 2 .• (The
reason for this change is that the text of the various p-terms given below was derived directly
from the output of the proof checking system; such output, for practical reasons, does not

make use of subscripts. The output was produced in indented form by use of Derek
Oppen's[1979 pretty-printer.)

78

, . " Wa - . ' I ,q I



- - ... . - 4';-2 - + ,

The p-term extracted from PACKB is:

ppackb =

XXBn
(X a2

(OE (a4)1 ,E)(nIlnth(B1))

(OH (a6)
LT'ED(X:1,l1:n)
(OE (a8)

PACK(tl(X),set(B,n,B:n -(X:I)))
01(1,

EE (a 10 A)
a8
EI(Sl(y#,

< #(AX,B,n)(a2,a4,a6,alO),a2,
#(n.A)>),n @ A))

(OF(al 2)
PACKII(X,1,n + l)(a 2)
01(i,

IP (a14 A)
al 2

<i(, 1411),[a 14 21,
#(n,A: l)([a14; 31)>),A))

01(2, # (X, 1,n)(a8,a 12))))
(Oi(a 16)

PACKII(X,B,n + l)(a2)
01(1,

E|(a 18 A)
a16
PI(SI( #,

<I- 18. I j[a 18.21, # (n,A: l)([a 184 3])>),
A))

01(2, # (X,IBn)(a2,a 6,a 16))))
S01(2, # (X,B,n)(a4))))

The system of lemmas ppack and ppackb has the termination property with respect to our
call-by-value normalizer: this can be established by exactly the same kind of argument as

would he used to establish the termination of the ordinary recursive functions pack and packb.

Let t I and t2 be closed terms for lists. By theorem 3.1 of chapter 3, the result of
normali/ing "ppack(t 1,t2)" has one of the two forms, "0l(l,El(t3,t4))", and "O1(2,ts)". A
result of the Ibrin "0l(IFl(t3,t4))" may bc read as the tenn part of a construction

0l(lF(t3:legal(t ,t2,t4)'t4):3A(legal(t,,t,A))):3A(legal(tlt 2,A))V-1(3A(legal(tlt 2,A)))

V 79



This result indicates that a legal assignment of blocks t into bins t2 does indeed exist, and
that t4 is such an assignment. If on the other hand the result has the fonn "O1(2,t5)", then

no legal packing is possible.

4.4.2 Two small experiments

As indicated in the introduction to this chapter, the experiments consist of specializing

ppack to handle inputs of a particular size and structure by means of the following steps. (I)

The term "ppack(t 1tt)" is nornalized. elre tt and t2 are open terms having the form of the
special inputs to be treated: namely, 4Pi1 .... ik>. and ,n,n ... . where "ilId, ... "ik", and

"n" are numeric variables. (2) The nornal formi of "ppack(t,t 2) is subjected to the
"simplex" optimization, which makes use of an additional assumption about the structure of

the inputs: in particular, it is assumed that i1 > i2  i. >i3 . (3) Pruning is applied. The
result of all this is a decision tree algorithm (given by a p-term) for the special task of packing

k blocks into some particular number of' bins of equal size, under the assumption that the

blocks have been given in decreasing order of size.

To begin with, we will describe the results of this process tor the simplest case which is

not absolutely trivial, namely the case where t, = <il,i2>, and t2=, 'irst of' all, the

result of normaliting ppack(<i<,i2.>n,,,,nn>) is:

I

80

4 8 0 W



PI =

OF(a7)
I .T'l)(il,n)
(O. (09)

l.'l'EX)(i2.n-il)
! OI(1,E.I(# (a7,09),4 1,1 ),))

(OE (all)
I.1TXi2,n)
Ol(l..I(# (a7,a I 1),A 1,2>))
(OF (a 13)

l.TEI)(i1, n)

(OF (a 15)
I.IFI)(i2,n)
0l(l,l: -l(#(a 13.a 15),4 2,1D-))

(01: (a 17)
l.TI(i2,n- iI)
O1( I,FI( #(a I13.a 17),4 2,2>.))

O1(2, #(a I l,a9,a 15.a 17))))
01(2. #(a I la9,a 13)))))

(O. (a 19)
• l.'l'FDI il,n)

(O1 (a21)i I 'IUl)(i2,n)
01(1 I.:I( 4 (a 19 .a 215,' 2,1 ))

(O1(a 23)
iT' - )(i2,n- il)

01(1,P'I( #(a~ l9 .a2 3),42,2))
01(2. (a 7,A 2I,a23))))

01(2, #(a7,a 19)))

This p-term, if written as an ordinary conditional expression, would read:

C -

it' il<n then
ift iT+i2 <n then 41,1>

else
if i2<nthen 41,2>

else
':t if il n then
'I fif i2<n then ,42.1D,

else
it i I+i2 <n then 2,2> else

else 4.
else
it' ili<n then

it if <n then 12.1>
else
if il+i2 <n then -2.2h else,

else

4 I 81

iOh



The above conditional expression would also result from normalizing the ordinary

recursive function definition pack on the symbolic inputs ,i1,i2, and <,nn using the
reduction rules mentioned in section 2.8, and in addition the permutation rule:

if (if t1 then t2 else t3) then t4 else t15

= if t, then (if t2 then t4 else tt!5) else (if t3 then t4 else tt!5)

Now, the "simplex optimization" consists of removing "pre-decided" case analyses.

Another transformation is applied at this stage, namely the replacement of occurences of

assumptions when possible by "proofs" of those assumptions from other available information.

This last transformation improves the effectiveness of pruning, since it removes apparent but

in f ct unnecessary dependencies between the facts involved in the computation. Since all of

the decision predicates which appear in bin-packing take the form of incqualities b tween

linear terms, the simplex algorithm may be used to perform these transformations.

The "simplex transformations" are instances of the following general replacement

transformation on proofs. First of all, we define the set of active assumptions (t a node of a

proof /ree to be the set of assumptions discharged along the path frnom the node in question to

the root node Of the proof. More Connally, a formula A is active at a node N if N lies in

[using q-term notation]: (1) II of O1E(l11 :AVFIq2, 11_3), (2) 11, of OF(FlI:FVA,F12,nH) (3) [1

of II(A,1I), (4) 112 of EE( II 1 --xA,11 2). A replaccmea transfornmation is a transformation
which replaces at stibproof II':A rooted at node N of a proof I1 by another proof Ii":A of the

same formula A, subject to the condition that the open assumptions of If" are among those

active at N.

The simplex transformations are replacement transformations of a special kind. Consider

a subterm of the form 'lT.D1t,t 2 )" which appears in a bin-packing p-tern. Suppose that
* one of t <t 2 or t?(t, follows from the actiNC assunmptions at the node at which lTt'Fl(t 1 .t2 )

appears (all of the active assumptions will themselves be linear inequalities). That is to say,

suppose that the outcome of executing I Tl.l)(trt 2) is pre-decided by the linear inequalities
which have already been astmined at the current node in the decision tree. Then the

invocation of ti lenima I. TII) can be remo\ ed in Ca% oi- of a small proof of "t <t 2 Vt2<tl" by

means of an V-intnodUction Irom one or the other of the results "tl <t 2. or "t 7t0".

Specifically, that proof will have the form

I2

~82

it . ,



0I~k.AX([F 1.F2.. 1:1 D FO J)(AS(l,)AS(F2).. AS(F))

where k is either I or 2, where FO is either t1 t 2 or t,<t1, and where II.2....Il arc the
various inequalities which are active aSSu npt(ions at this point in thle decision tree, and which
are needed to concilude that FO holds. This is exactly thle replacement which is pertlormced by
the first simiplex transformiation - except that the replacement is carried out in the language of
untyped p-terms: thuls thle replacing termn has thle tbrmn 0I(k, #(al .*av)), where thie tir are
proof variables.

Now, let uts consider the second transformnation - the dependency removal transformat ion.
Suppose that an assumption AS(l-')) in at specialiied bin-packing proof follows fromt other
assumptions which are active at thle node where the assumption appears. Then thle various
results %%fhich are deriv ed using thle assumption have thie appearance of depending on that
assunI0-n, but thle dependency is in a sense unreal - it could be dispensed with. If we wish
to make thle best ulse of pruning. then apparent dependencies of this kind should be
eliminated. So we Ilse thle simplex method to replace assumptions AS(lo) by proof'-, ot thlose
assumptions fromt other issumpltions w hich are currently in effect. Fihe form of the proofs
with which assumptions are replaced is

AXq 1 .F,.. Un D F (j)(A S(l 'I),A S(fj AS(F,))

w hee Vic F F ir (lite lbinitli [is needed t establish FI '.II p -mterm no tat ion, this has thie
form At (v 1, ty ). Note that thle fornnulas which ale associated with proof variables in the
bin-pak-king pi-terms can be determlined bN' findingi the 01: operaitor \%hich binds thle variable,
and look ing at1 its first aiulent "I FIi Xtt,: if' tile N~ariable inl question appears in (lhe
second premise ito this 01-. operator thenl thle associated fon-iliula is 'tt,.and otherwise it is

t,,.

One more piece of' in formiation remains to be speccified about the simplex transformations.
It tmy happen that se~ eral distinct proot's canl be uised to replace a single assumption orj1 "IIl i nmocation: thle inequality inl question migh,1t follow front se~ era.l different subsets of
thle thie ciirrentlv alcti~ c set of, assumled inequalities. We have not salid hlow at choice amiong
severa.l suich possibilities IS to be miade. InI fact only one possibility, namely thie one generated
Ib) thle lb1lomingj algovithiln. is conisidcred. I et l' . . . Fit be at list of' all the assuimpt ions
,ictk~e at at givenl node in the order of, 'innennlost" to "outermost": that is, F1I is thle
assu iii pt II dischia rged niearest thle currnmt node. whlile F., is the assumption discharged nearest
thle iroot of' t(lie proof' Ill aittempt ing it find a1 fininin i'm suibsct of' IF I'd fronti which 41

---------



fomniula F0 canl be derived, our algorithm procceds inl the following way. First it checks
(using dhe simiplex miethod) whether F0 follows from I,.If not then it checks 4F . 1
{F1,F2 ,3 , and so on, until it finds a least j such that F0 follows from I:F, .. .. F i}. or until it
is determined that F0 does not follow from dhc entire set {FI,.  F}* In the latter case, we
arc done, and return a negative answer. In thc former case, we scanl through the set again, in
the order F, . . . .I., in which it is given. F'or each clement F, considered, anl attempt is made
to remove I' 1 romn the set: the attempt is deemed successful if the reduced set still implies Fe
Af'ter removing or attempting to renme each 1 in turn, we evidently hame a inininimial set of
inequalities with tie desired property. It is this set which is returned by tile algorithm. '['his
algorithm was the first that came to mind. and, because it prIoduiced good results, we did not
try another.

In each of the siminplex t ra nsforniazions, thle inrequnalit ies it i-,', i > '3, ~~ r
assumed as "background" intormation. That is to say, whenever we used thle phrarse F
follows :Yoml I . . FY inl the above, wec meant IFo follows From 4F l" ... j and

Note that the only property of thle bini-packing proofs of which simplex tranisformations
miake special use is tile fdct thait thle decision predicates have thle 1,61n1 of li near iniequlali ties.
'Iraris frnirations of thle same k inrd - nanlel v, i'e plaCce1mI c sOf 0cas anLkC 1e1ard repILacerniret Of
assu mptionis - car lie app lied to ally' p rt, ulfi rder tie colmdi iii U? at a decisin p rocedu rre is
available for thle Case predicates which appear ili thic proof. Thus, tie speciail purpose part of
thle s imip lex trailsfor'ma t ionis is just tilie sin i plex a Igo ritdi n i tselft

As miient io ned earl icr. [lie si mPC' lexlgoi ri dim used inl tile i mll plernen tat ion) Was not \Nri t te i
by die current author. Rather, a "'canned" siriplex package. i% ritten (inl NMacISP) by Greg
Nelson, was rt iported in to thle p root mni ii lit ion sy sterm.

T he resul t o f applying the simplecx trnanisferii iar ions to the nrmiaI Clrml of
pack( ili <r?.njirr) gi'cil ealr, and thenl nonn1,ialitr'g agar' is:

~4 84



P 2 =

OF (a25)
I.TD'(il.n)
(OF (a2 7)

I -I'I( i2,n - il)
OI(I,FI(#(a27),4I 1. I >))
01( 1. 1-'(# (a25),4I ,2 > )) )

O1(2 #(a25))

Written as an ordinary conditional expression, this is:

c) = if il<n then (if il+i2<n then <1,1> else 4I.2>) else FAll,

Note that the first of the two simplex optimni,ations - namely, the one which removes pre-

decided case analhses - could as easily havw been applied the conditional term c1, and the
result would have bccn c 2. 1 TIus, so .ar, no use has been made of the additional depcndency

in fonnation which the p-term contains, but which the conditional term does not. However,

prnning is applicable to P2' yielding:

P3 
= 0 (Y 2 9 ) I )(il.n) 01(1.1!1( # (a 29 ), < 1,2>)) 01(2, #(a 2 9))

Written as a conditional expression, this is:

cl = if il<n then U.2>, else UAll,

Thus p3 tries only one packing, namely 4 1,2>. If any packinrg \orks, then this one

* . must. [his fact is "automatically rcali/ed" by the dependency analysis involved in pnrning.

* '' Note that p3 computes a differet fiunction from thAt computed by P2. Also note that P2

is tlie OptimlI (ie smallest and fastest) colndit ion al expression 60r ('i mpuling ]hefitttion Ail i2

I . prck(- i l~i2>y.<rni>) with il>i2. lus, it is only by using a transfornmation (such as

pi ling) whIiich modifies the cxtensional il ealling of" colipt1 tationali descriptions that we are

able to alchie,,e the improvemncnt "Iich p1 represents over P 2.

As mentioned inl (lie introduction to this chapter, it is not f¢,isible to perform stages (1)

.Mi d (2)of the speci~lliia tion separately for, the larger mxarn ples. Tile reason for this is that the

85Vis
Z§ U7



p-terms which result front stage (1) alone are too large to fit in memory in the current

implementation. Thus the simplex transformations and normalization were run in parallel; the

nornializer was modified so as to apply the case analysis removal procedure when called upon
to "normalize" an expression of the forn "LTED(t1lt 2)". Assumption replacement was
implemented in a similar manner.

We now present the results of another small experiment, namely, the experiment in which

pack(4 i .i2,i3 >, nn,>) is specialized. First of all, the worst case nmning time of the original
version of pack (or equiv alently of ppack with our call-by-value norniali/er) with i1>i2>i3 is

10. where running time is measured in number of comparisons. More precisely, there are

numerals a,b,c,d with a>b>c such that the number of comparisons made in the course of the

execution of pack(,<a.b.c'.,<d.d>) by a standard call-by-alu e alnIato," for conditional

expressions is 10, and fithermore tis is the largest um1ber of comparisons which ill be
made in any execution of pack applied to an input \\ith this form. The worst case running

times for pack reported here and below \CI-e computed using a prograil which searches
through .1I possible execution pallis (ic sequences of comn pariso ns) of pack \N hen applied to an
iniput of the special form under consideration: the length of the longest such path is returned.

l'he simplex aIgtoridlhin is used to dete rnimh, Mhich cxecution paths are possthl, and \which are

not.

I he iesu lt of fnlormal i/ ing ind applying tile simu plex trans Ii mat ions to
pack( " .i .i 2.i3t'>.'- ni > ) is:

is

86

" . .. . . . . .I1 ' I II I



E (all)
LTED(il,n)
(OE (a 13)

LTED(i2,n- ii)
(OE (a 15)

LTED(i3,n - il - i2)
01(1 ,El(#(al5),(l,,l")))
0(2 ,El(#(al3),1,I,2 )))

(OE (a17)
LTED(iB,n-il), O0l(1,Ei(#(all,al7),-9 1,2,1>))

(OE (a19)
LTED(i3,n-i2)
0 l(1,El( #(a I ,a 19),-41,2,2),))

0 1(2, #(a9)))))
01(2,#(al1))

Pruning when applied to the above p-term yields

OE (021)

ifED(il,n)(OE (a29)
l.TEI)(i3,n-i2)
Ol(I,EI(#(a21,a29),<1l,2,2>,))
0!(2,#(a29)))

O1(2, #(a21))

Written as an ordinary conditional expression, this is:

i it"Iif" il < n then

ifi2+i3 < n then < 1,2,2) else FAIL
else FAIL

E Note that pruning again yields an optimal algorithm for the special case considered - an

algorithm which computes a different finticon from that originally computed by pack.

l7

, 87



4.4.3 An algorithm for packing six blocks into three bins

The results of the experiment concerning the packing of six blocks into three bins were

described in general terms in the introduction to this chapter. The end product of that

experiment - that is to say, the algorithm produced at the last stage of the three stages of

optuni7ation - is given below as an ordinary conditional expression.

if il < n then

if i2+i3 < n then
if i+i6 < n then 41.2,2,3,3,1,

else

if i4+i+i6 < n then -12,2,3,3,3) '

else FAIL

else

if i+i4 < n then
ii i+i6 < n then (,2,3,2,3,21

else

if i3+i5+i6 < n then 41,2,3,2,3,3>,

else FAIL

else

if B3++i4 < n then
if i2 +i5 < 'n then

if iI+i6 < n then 1,2,3,3,2,1:

else

if i2+i5+i6 < n then 11,2,3,3,2,2> .
else

if i3+i4+i6 < n then 41,2,3,3,2,3>

else FAL
else

! if i3+i4+i5 <_ n then
~~if i6+i2 __ n then -41,2,3,33,2>"
I else

it" i3+i4+i5+i6 < n then 4(1.2,3,3.3.3,>'

else FAIL
else FAIL

else FAIL

else FAIL

$88

. . 4 ._moI - "'-~ - -" ___.



17-

4.4.4 Table of other results

The following table summarizes the results of the remaining experiments. Six numbers

arc associated with each experiment. These quantities are:

(1) P. This is the worst case running time of ..ick applied to inputs of the form under

consideration.

(2) EP. The performance of the general purpose algorithm pack in treating special cases
where the bins are all of the same size is very bad. One reason for this is that no use is made

of symmetries introduced by the equal sizes of the bins; each of various packings which are
equivalent under renaming of bins is considered separately. It was of interest to compare the

performace of our optimized special purpose algorithms with the performance of an algorithm
with the same design as pack, but which takes the symmetries introduced by equal bin sizes

into account. That algorithm is as follows:

epack(X.sk) +- epackl(X,4)1-..sk)

epack l(X.Bn.s.k) 4-

if n<Inth(B) then

if X:I<B:n then
({z.

(if z*FAIL then n ( z

clsc epackl(XlIn+ 1,sk)))

(epackl(tl(X).sct(Bn.B:(n - X:1)),l.sk)
' elselse cpackl(X.B~n+ l~s~k)

if k>l A (X:I-s) then

JA z. if z*lFAll. then (Inth(I)+ 1) @ z

else FA IL else FAll .} (ep ckl(tl(X),l .*4X :I ,,l sk- ))

"lbc algorithm epack(X.sk) searches for a packing of the blocks in the list X into k bins

289



each of size s. The subprogram epackl(X,B,n.s,k) searches for a packing of the blocks X into

a collection of bins described by the inputs B,s, and k. 'Ibe initial elements of this collection
are just the bins whose sizes are given in B, while the remainder of the collection consists of k

bins each of sizc s. As in packb, the first block X:1 must be placed in a bin whose index is at
least n. The behavior of epackl resembles that of packb, except that it keeps track of which

bins are still empty. A block is placed in an empty bin only if the attempt to place it in a
non-empty bin leads to failure. In contrast to packb, epackl attempts at most one placemen.

of any block into an empty bin. The term "B*4X:I)" in epackl denotes the result of
appending the list ",X:1>" onto the end of the list B.

The number EP represents the worst case running time of epack.

Note that, even if it had turned out that the "hand-optimized" algorithm was more
efficient than the specialized algorithms which we produce by automatic methods, it would
not follow that the automatic methods are not of use. An automatic specialization method

such as the one currently under discussion starts with a general algorithm and with a
description of the special form of the inputs to be considered; the output of the method is

then a specialized algorithm which deals with inputs of that special form. The most direct
measure of the effectiveness of the specialization method is given by a comparison of the

output of the method with the original algorithm, and not with some third algorithm (such as
epack) produced by a person to handle inputs of the special form. A separate matter of

interest is to compare human and automatic performance in this regard as we are doing at the
moment. As it happens, and as will be seen, our automatically specialized algorithms are in

fact faster than the algorithm epack given above.

(3) I) is the depth of the decision tree produced by applying normalization and the

simplex transformations to pack(,il .... in>>,,nn .... n)). Equivalently, 1) is the number

of comparisons made along the longest path down the decision tree; that is to say, the
"running time" of the decision tree.

(4) I)p is the depth of the decision tree produced by applying pruning to the tree of (3)
immediately above.

(5) S is the size or the decision tree of (3) measured as the number of decision points;

equivalently, S is the number of occurences of "TF11)" in the p-term.

(6) Sp is the size of the pruned decision tree of (4).

t9



In the table, the above quantities are arrayed in the form:

P

EP

D S
Dp Sp

The effectiveness of pruning is indicated by the differences between D and Dp. and between

S and Sp. The table of results is as follows. Occurences of "*" in the table indicate that the

;relevant decision trees could not be constructed because of lack of memory space.

10
4

3 4 5
2 2

14 48
6 7

4 6 10 7 13
B 4 4 2 2
L

0
C 38 66 260
K 17 10 11
S 5 7 27 10 33 11 37

6 12 4 4 2 2

58 174 356 1630

27 27 15 16
6 17 62 14 87 * * * *

12 40 8 15 4 4 2 2

*2 3 4 5

11 INS

91

t I . , r.- - . . . ... . .. .



4.5 Summary

The results of the experiment show that prunable redundancies can indeed arise in the

specialization of a simple combinatorial algorithm, and consequently that pruning can be of

use in specialization. It is of course possible that equally good specialized algorithms for the
particular problem treated - namely, bin-packing - could have been arrived at by a head on

attack. For example, one such attack would involve manipulating the propositional formulas
which result from unwinding the definition of a legal packing as applied to inputs of restricted

* size. However, as has been remarked earlier, the methods by which the specialization was

done are for the most part completely general in their applicability; the only special property
of the bin-packing problem which was used was the decidability of linear inequalities. The

machinery of normalization, and pruning, and proof replacement may be applied to any proof
whatever. The experiments should be seen as a first test of the utility of this general

machinery. Our purpose was not to develop fast special purpose bin-packing algorithms, but
to investigate pruning in a setting where its effects could be easily isolated.

':I

II

92|



Chapter 5

Other Applications

Until now, we have restricted attention to the use of proof manipulation in specializing

algorithms. The purpose of this chapter is to briefly indicate other computational applications

of the proof manipulation technology which has been described in the course of this thesis,

and at the same time to outline some connections between our work and other traditions of

work within computer science. Applications to two kinds of computational problems other

than specialization will be considered, namely, applications to the automatic construction of

proofs (from proof fragments; section 5.1), and to the analysis of change (section 5.2).

5.1 Automatic construction of proofs

As emphasized in the introduction to this thesis, most work in computer science to do

with formal proof systems has concerned the automatic construction of proofs, and not their

manipulation. Generally speaking, the aim of such work has been to provide automatic means

for determining the truth values of propositions: a proof of a proposition is constructed in

order to determine that it is valid. Automatic proof construction (or "automatic deduction")

in its most pure and ambitious form involves starting with an arbitrary formula of an

expressive language (cg the predicate calculus) as the only input data; the output is either an

indication that a proof has been found, or an indication of failure. Other forms of automatic
deduction make use of additional input data beyond the formula to be proved; for example

sets of of "rules" for backward chaining [Shortliffe 1974], or sets of programs which indicate

in explicit algorithmic terms how certain problems are to be reduced to subproblems [Hewitt

19711. It is traditional within artificial intelligence to refer to this additional input data as

"knowledge".

Normalization constitutes, in a certain sense, a method for automatically constructing
proofs; a normal proof of a proposition is automatically constructed from an arbitrary proof

of that same proposition. In this case, the "additional input data" in the sense of the last

paragraph consists of the original proof. From the point of view of automatic deduction,

normalization is of no use, since the additional input data with which it starts is already

satisfactory evidence for the truth of the proposition in question. However, by liberalizing

the requirements which apply to proof procedures and lemmas (section 2.5) it is possible to

use the machinery of normali/ation as developed in chapters 2 and 3 for constructing a

93

I " q. - - ,r"



normal and complete proof of a proposition starting from an incomplete proof of the same
proposition. Under these conditions, the normalization of the incomplete proof includes a
search for evidence for propositions, and thus constitutes a form of automatic deduction in the
traditional sense.

Specifically, let us drop the following requirements concerning lemmas: (1) the
requirement that lemmas must be true formulas, (2) the requirement that lemmas may not
appear in the proofs constructed by proof procedures, and (3) the requirement that a proof
procedure may not return "FAIL" when applied to closed arguments. Also, we will now
allow proof procedures to produce proofs which make use of assumptions which are active at
the point where a lemma appears. (The notion of an active assumption is defined in section
4.4.2.) We retain the requirement that all axioms be true. As a result of the removal of
requirements 1 - 3, it is now possible to construct incomplete "proofs" of incorrect formulas -
proofs which proceed from false lemmas to false conclusions. However, the main point here
is that the process of normalization - exactly as described in chapters 2 and 3 - may h-ve the
effect of removing appearances of lemmas - thus converting an incomplete proof of a formula
whose truth is in doubt into a complete and reliable proof of that same formula.

If normalization is implemented in a call-by-value manner as described in section 4.1,
then the normalization of an incomplete proof corresponds in a direct way to proof search by
backward-chaining through implications - in other words to "s bgoaling". Specifically, in the
course of normalizing a proof 1l:4p containing lemmas I,:Vxq'l(4) 1.2:Vx' 2(-X) . .
l.n:Vx*n(.), the proof procedures for some or all of the lcmmas are invoked. (The invocation
of a proof procedure corresponds roughly to an attempt to "match" a subgoal.) When the
proof procedure for, say, I+ is called with input t, the procedure will either fail
(corresponding the failure of a subgoal in backward chaining), or return a proof Hi of TO.
In the latter case, Hn is then normalized. Since Hi may itself contain lemmas, theInormalization of H1 will in general involve further backchaining. If the end result of
normalization is a proof in which no lemnmas any longer appear, then the endformula q) has
been "proved"; this corresponds to a successful search for a proof by backward chaining. (In
particular, this corresponds to backward-chaining without backtracking; however, the addition
of backtracking to the mechanism of normalization is a straight-forward matter.)

Let 11 be an incomplete proof of a universal formula Vxq(x). Then it will often happen
that the nornimlization of H fails to yield a complete proof of Vxqp(x), but at the same time,
normalization of the proof

Vxq,(x)

494

I f -



for a particular term t does yield a complete proof. This can come about in the following
way. The normalization of fl(t) will in general select a smaller and more specialized set of
"subgoals" (that is, lemmas for which proof procedures arc invoked) than the normalization of

H; in theorem proving language, the normalization of H determines the particular set of

subgoals needed to verify each instance p(t) of the general formula Vx p(x) - different sets of

subgoals will be generated for different instances. The subgoals generated by normalizing
l(t) may be satisfyable even though those generated by normalizing HI are not. In this casc,
H does not provide evidence for the truth of the general statement Vxq,(x) (indeed, Vxq)(x)

may not be true), but does indicate a method for attempting to construct evidence for

instances q)(t) of the general statement.

In the case where qp is existential, that is, where q)(x)=3y,(x,y) for some 4,, a successful
normalization of

Hl
Vx3yo(x,y)

VE
3y4,(x,t)

yields a value for y; thus H describes an algorithm for computing a partial function satisfying

the specilication %b. The computation in question involves a mixture of ordinary computation
(normalization), and proof search by backward chaining. In this respect, normalization of

partial proofs resembles the behavior of "pattern matching languages" such as Planncr[Hewitt

19711 and its successors, where ordinary computation is mingled with subgoaling. Moic will be
said about this resemblance later.

The correspondence between normalization and familiar kinds of backward chaining is
enhanced if the proof procedures for lemmas proceed by searching for a "match" between the

lemma to be proved and the cndformulas of proofs in a pre-existing data base. For example,

suppose that one starts with a data base {l t , .... rI n } of incomplete proofs of universal

formulas. Suppose further that all lemmas which appear in proofs of the data base are V3

J formulas. Finally, suppose that the following uniform proof procedure is supplied for all
lemmas: the procedure, when given input t for a lemma L:Vx3y4'(.,y), scans the data base

,.. .{r.. ...... n} looking for a proof li:Vzcp( ) such that the formulas ft(_,y) and () unify in
the sense that there is vector of terms r0 ,rt,r 2 ... rk with (t,r0 ) = p(rt,r2 ... rk). If such a

proof 11 is found, then the procedure returns the proof

4Hii
'! Vi F V w.(z)

qp(rt,r 2 ... rk)
31-

'i 3yO(t,y)

95

I'___
J- ~~--I---- ------



If no such proof can be found, the procedure returns "FAIL". The similarities to Planner and

its successors, and also to the "logic programming language" PROLOG [Kowalski 19741,
should now be evident. In particular, the behaviour of both MicroPlanner, and of PROLOG

programs, can be closely matchcd by the machinery just described. '[he proofs {I-i]
correspond to consequent theorems of MicroPlanner, and to the horn clauscs of PROL.OG.

The value returned by a successful execution of a PROLOG program corresponds to the

realization w. ich may be extracted from a normal proof of an existential theorem.

As has been convincingly demonstrated by work with PROLOG, a person who knows in

general terms how backward-chaining works is in practice able to express an arbitrary
algorithm as a set of implicational formulas; the execution of the algorithm takes place when a

backward-chaining theorem prover (eg, the PROI.OG interpreter) is given those formulas as
axioms, and a goal which encodes the input to the computation. (One also needs a

mechanism for extracting an output value from a proof, in PROLOG, this output is
constructed in the course of the search for the proof.) It is of course essential that sets of
implications be constructed with an algorithm explicitly in mind; a set of implicational

formulas which are chosen solely according to the criteria of Tarskian truth and completeness
are exceedingly unlikely to be of any computational use, regardless of the theorem prover

used. (This is analogous to the observation that a proof of an V3 theorem which is
constructed soley according to "mathematical" criteria such as validity and elegance is unlikely
to be of much computational use when executed by normalization.) Kowalski[1974] has

discussed the advantages of describing algorithims by sets of forinulas and executing them by

use of a backward-chaining theorem prover. As we have shown, it is possible to mix
normalization with backward chaining: presumably, this should allow the benefits of the two
forms of computation to be realized simultaneously.

We remark on two additional aspects of automatic proof construction using normalization:

*(1) Note that what Stalhman and Sussman[1977] have called dependency directed

backtracking "conies for free" in normalization with pruning. Suppose that one wishes to
normalize a proof

[Al [13
l I 1 2 17 3

. AVII C C
V I

C

whose main inference is V-elimination. Suppose i rther that C is a Ilarrop formula, and that

normalization of 11, does not decide between A and 11. (Evidently, the requirement that only

96

4

"mo



non-Harrop axioms appear in proofs may be dropped in the case where the endformula is a
Harrop formula; consequently the normal form of n may fail to decide between A and B -
for example, li might consist simply of the axiom, "AVB".) Then, in the usual case, it will
be necessary to normalize both 1 2 and r13. However, if the normal form 12' of n2 does not
make use of the assumption A, pruning allows us to produce 112t as the end result, and
thereby to dispense with the treatment of 113. Thus dependency information can be used to
reduce the amount of search or "backtracking", juzt as it does in the various systems for

"dependency based reasoning" which have been developed by workers in Artificial
Intelligence (see l.ondon[19781, Doyle[1978], Shrobe[1979]). Also note that in normalization,

dependency directed backtracking does not rely on "non-hierarchical contexts" or non-

monotonic inferences.

(2) A complete proof of a formula Vx3yq,(x,y) provides evidence for the truth of

Vx3ytp(x,y), and in addition describes a method for computing a function f with Vxqp(xf(x)).

As a consequence, the normalization of an incomplete proof H:Vx3yqp(x,y) consitutes both a

search for evidence, and a search for an algorithm with certain properties: in the tenninology

of computer science, normalization can serve as a method for tile synthesis of complete

programs from program fragments. (For comparison with program synthesis for PROLOG

see [Clark and Sickel, 19771). Notes: (a) If normalization is implemented as a semi-automatic

procedure - a procedure in which a human user has the option of interactively constructing
proofs of lemmas - then we arrive at a "refinement" method for constructing programs very

much like that developed by Bates1979. (b) A single proof transfonnation, namely pruning,

can have tie effect of improving the efficiency of a computation at "run-time" (as explained
in the last paragragh), or of optimizing an algorithm, depending on whether the

transformation is applied in the course of computing a value, or to a proof of an V3 formula.
* /

* It is also worth considering the case where normalization of Vx3ycp(x,y) produces a proof

11' which is not complete. Here, Hl' may still be used to compute values of y with (p(x,y)

from values of x in tile manner described earlier; the computation will not consist of "pure"

normalization, but will involve backward-chaining through lemmas as well. What, then, is the

significance of the passage from H1 to H'? In tile scheme for the execution of incomplete

proofs with which we are currently concerned, the burden of computation is shared between

automatic deduction (perhaps in the florm of "matching"), and pure normalization. When

* Hl:Vx3 yq(xy) is executed, all computation (including both pure normalization and automatic

deduction) which is possible in the abscence of a concrete value for x is carried out. When a

concrete value for x is supplied, the remainder of the computation is performed. [hus the

passage from [H to II' constitutes a kind of optimi.ation; all work which can be done without

knowing the value of x is carried out first, and, as a consequence, this work does not have to

be repeated each time H' is run.

,97

-A L ..



5.2 Analysis of change

Consider a situation in which one is obliged to solve a series of problems Pt, P2.... Pn,

where Pi+t is only "slightly different" from Pi, Then it may happen that the same solution

works for many consecutive problems. It is useful in this situation to determine conditions

under which a small change in a problem leaves the correctness of a solution intact; if the

difficulty of evaluating such conditions is small compared to the effort involved in

constructing a new solution, then the total effort needed for solving l-1, P2. Pn can be

reduced.

In Artificial Intelligence, the task of determing the effects of small changes is referred to

as the "frame problem" [McCarthy 19691. The use of proofs as descriptions of algorithms can

provide aid in attacking the frame problem, in the following way. Suppose that when a

problem ? is solved, one constructs not only a solution S, but also a proof I that S really is a

solution of P. '[hen n provides an explicit description of the features of the problem upon

which the success of S depends. If P is changed slightly, one is able to see, by inspecting the

proof 1, whether any feature relevant to the success of S has been modified. Now, if one

uses a proof to describe a method for solving a problem, then the execution (ic normalization)

of the proof when applied to a particular problem yields not only a solution, but also a
specialized proof that the solution is correct; and, as we have said, this proof can be used in
the analysis of change.

h'is idea is illustrated by the following schematic example. Consider the problem of of
computing an output value v with 4p(tv) when given a vector t = t I . . . tn of inputs.

Suppose that an algorithm for doing the computation is given by a proof H of Vx3yqp(x,y)

and that the result of executing 11(t) is a proof H' of 3yq(t,y) which provides v as a value for

y. In the general case, H' will make use of properties of some but not all of the inputs

tl . tn . Suppose then that a "slightly different problem" is presented - namely the

problem of computing v' with p(t',v'), where the vector t' differs from t in only a few entries.
If the entries in which t' differs from t do not include any of the entries whose properties are

mentioned by H', then p(ct',v) holds, and the computation does not need to be repeated.*1
The same kind of analysis of change can be carried out without using proofs. Suppose

that, in the above schematic example, the computation of v fr'om t is carried out by the

execution of an ordinary program p(x 1, .. xn) rather than by the nomlalization of a proof.

Then a trace of the execution of p(t I, . tn) will indicate which among the values t. tn

have been used in the computation and %%hich have not, thus providing the same kind of

dependency data as is supplied by the normal proof il':-Jyq(t,y). However, the normal

98

p



proof I1' in general provides a more thorough and more useful analysis of dependencies that

the corresponding program trace. To see how this can come about, comparc the execution of

a conditional expression

if r, then r2 else r

with the normalization of the corresponding proof:

[A) fill

T11t -72 n-3
AVB C C

ViE

C

Suppose that (I) r, evaluates to "TRUE", (2) the normal form of 112 does not contain the

assumnption A, and (3) an input ti appears in r, 'nd in P,) but not in r2 (nor in r12). Then,

in a trace of the execution of "if r, thcn r2 else r3", the outcome will appear to depend on ti ,

but the corresponding normal proof will reveal that the correctness of the outcome is

independent of ti .

Thus, in the analysis of change as in the specialization of algorithms, proofs provide

additional data about the dependencies between facts involved in a computation, and this

additional data can be exploited to avoid redundant computation.

Analysis of change of the kind which we have been discussing - based however on the

use of programs, and not proofs, as descriptions of algorithms - has been used in a number of

settings within computer science. To take a simlple example, the conventional program

optimization which is known as code motion [Aho and Ullman 19731 involves analysis of

change in the context of iterative computation. In the typical kind of code motion, an

v F assignment statement "v - C is moved out of an inner loop when it is determined that the

variablcs appearing in t do not change in the loop. By using a proof for describing the

computation of the value to be assigned to v, this analysis of change might be improved -

specifically by determination of the conditions under which the correctness of the value

computed depends on variables which change in the loop. A related idea is worked out in a

paper of Kat/[19781 concerning the use of proot, or invariant assertions in optimizing iterative

descriptions of compliation.

Other examples are provided by consiraini systems such as those developed by Stalhnan

and Sussmian[19771, and Borning [19791, and by "dependency based reasoning systems" such

as those of Shrobc[1979], London[I9781 and I)oylc[19781. In these systems, situations - such as

the state of an lecti ical circuit [Stallman and Sussinan 19771 - are represented in such a way

, T - -99

,~~~~~~ ~~~ ~~~~ " .... r" "' ' ___JI IIL-



that the dependencies among the facts and values which describe the situation are explicitly

recorded. When the situation changes, or when an assumption about the situation is added or

withdrawn in the course of automatic deduction, the dependency information is used to

determine what aspects of the situation have been affected, and what computation has to be

done to update the representation. For the reasons given above, the use of proofs as

descriptions of algorithms may be expected to improve the analysis of dependencies upon
which these systems rely.

I t$1

I

K: - -100



Appendix A

Comparison to Extraction Methods from Proof Theory

Traditional proof theory provides two kinds of methods for the execution of proofs. First

there are the methods which operate by transformation of the proofs themselves. The
normalization procedure of Prawitz[1965] described in chapter 2 belongs to this class, as does

the cut-elimination procedure of Gentzen [19691 for the calculus of sequents. Second, there

are methods which involve extracting "programs" of one kind or another from proofs; it is

then the program which is executed, and not the proof itself. Examples of methods of the

latter kind are the recursive realizability interpretation of Kleene[1945I, the Dialectica

interpretation of Gbdel[1958], and tie modified realizability interpretation of Kreisel[1959] for

analysis.

The normalization method, and the moditk-ctions to it which we have made in order to

increase efficiency, have of course been discusscd at length in this thesis. The purpose of this
appendix is to compare the methods which we use to the other family of execution methods

from proof theory - namely, the functional and realizability interpretations. The account

which follows is intended for the reader who is familiar with these interpretations.

In gencral terms, the situation is this. 'The "programs" extracted by the three
interpretations mentioned above are Gidel numbers of partial recursive functions in the case

of recursive realizability, and typed X-calculus terms in the other two cases. As shown by

MIintSl 1977], the various programs extracted by these interpretations from a proof of

Vx3ycp(x,y) all compute the same function as does normalization. Furthermore, the

corvertability results of Mints, and the commutativity results of I)iller 119791 show that it is
not only the function computed which remains fixed under these interpretations, but also the

form of the computation sequences which arise when the function is applied to a particular
t argument.

The programs extracted by the functional and realizability interpretations mentioned
: above resemble the untyped p-ternis which we extract from proofs in that both the p-terms

and the programs contain the inlirnation in a proof which is relevat to execution but leave

out most of the rest of the data in the proof. The interpretations differ among themselves in

the efficiency of the programs which they extract, but, in one case - namely modified
reali/ability - the extracted programs are as consise and coinptlationally efficient as p-terms.

The I)ialectica interpretaion also produces "good code", but to a somewhat lesser extent. In

tile case of recursive realizability, efficiency depends on tile partictlar godel numbering and

interpreter used.

101

2!
It)II I

... .. ...1



For our purposes the differences between p-terms and programs are crucial, since p-
terms contain the dependency data needed for pruning, whereas the programs do not. In
order to specialize algorithms by symbolic execution and pruning as we have done in the bin-
packing experiments of chapter 4, we need a form of computational description which meets
both of the following requirements: (1) Symbolic execution of the description must be
tolerably efficient. (2) The dependency data needed by pruning must be present in the
description, and further, this dependency data must be preserved in the course of symbolic
execution. Now, normalization as described by Prawitz[1965] meets the second requirement
but not the first, whereas, from what we have just said, the programs extracted by the
functional and realizability interpretations meet the first requirement but not the second.
Thus none of the tools from traditional proof theory is adequate for perfoning the kinds of
manipulations on algorithms which have been the central concern of this thesis, and for this
reason it was necessary to use a new form of computational description - the p-term.

For a more explicit Formulation of the relationship between p-terms and the proorams

extracted by the interpretations, we will need the following notation. L.et y, be the procedure
which extracts untyped p-terms from proofs, and let y2 be the extraction procedure for any
one of the interpretations. The moditicd realizability and Dialectica interpretations extract
typed \-calculus terms from proofs: however, it is convenient here to regard the terms
extracted by y2 as terms of the ordinary untyped A-calculuIs. This is an inessential
mdification, since the type information contained by A-terms is not needed for normalization
and cannot help in pruning. With this taken into accotnt, there is a procedure Y3 fbr
extracting programs fr'om ip-enns such that the diagram,

commutes.

Thus, p-terins lie "on the way" fromi proofs to programs. Furthermore, the map Y3 is
many-to-one: thLre is no way of getting the p-term back from the program extracted from it.

In part (a) of section A.1, we will describe in general terms for the modified
realizability interpretation, and show in part (13) that pruning cannot be used in connection

2102



with programs produced by this interprcL.tion. The treatment of recursive realizability is

essentially identical. In section A.2. the Dialectica interpretation is dibcusscd. The example

which shows that pruning does not apply for modified realizability interpretation or for

recursive realizability also works for the I)ialectica interpretation.

For the current purposes, it is convenient to restrict our attention to a theory which,

roughly speaking, represents the intersection of the theories treated by the variouF

interpretations - namely, the fonnulation of arithmetic given in section 3.6. The language of

this theory is just the standard language of arithmetic, the set of available lcmmas consists of

the induction schema INI) . Wc have not said what axioms are used, and we don't need

to. since the choice of axioms makes no difference to what we have to say. (Note that the

,4andard system for intuitionistic arithemctic arises from one such choice of axiomis.)

A.1 Mt "ified realizability and recursive realizability

(a) First we describe the map y, which takes a p-term and rewrites it as a modified

realization. What y3 does is to replace the special operators 01 , 012- 01., El, FE of the p-
calculus by consiricts of the ordinary A-calculus. Specifically, we use the replacements:

# c (where c is a constant symbol; a different constant symbol is

assigned to each occurence o "#".)

011(t) <0,t>

01 O 2(t) < <lt>

OF (aA1 1t2,t1 ) =*, if uI(I) then t2la.-w 2(tl)l else tj[a-w 2(t1)I

.: I l(llt 2 ) = :> < tt,t2>

IT x!i1,2 =: tlW0--20
'

"INI~x,t) =:I {R(irl(t), Ay z.(Iw ,(t~y)j(<O,1>)))} (x)

In the above, R is a conventional recursion operator, to which (he reduction rules

R(t 1t 2Xs1cc x) := , t2(lt(t,t2)(x)Xx )

* R(t 1.t2 XO) tl

apply.

103

p

; # - ", lmm .. . . ..
JL ,- " . ... . .



The conditional operator "if t1 then t2 elsc t3" is assumed to take the numeral 0 as
TlRUF,~ and the numeral I as FAI.Sl. Tlhe conditional operator can of course be defined by
"if ti te 2 ele3 R 2 X y. t). Pairing can also be defined in the typed X-calculus

over arithmetic, but since the types of terms are not available in the current context, we take

pairing and projection as primitive. (Tlhere is no definable operator in thc untypcd X-calculus

which has the characteristics of a pairing operator, as shown by lBarendrcgtll972j.)

Thewe replacements preserve the behavior of terms tinder normaliz~ation, as shown by the

propositions (1) - (4) below.

1I) If treduces to t2 by the application of a single reduction rule of the p-calculus, then
Y3(t2) reduces to YP(2) by the application of a singlc reduction rule or the X-calculus.

(2) If t is in normial form (for the p-calculuis), theni y3(t) is also in normal form (for the
X-calculus).

(3) Let t be a p-term which hits heen extracted fromn a proof (of* arithmetic). Tlhen t and

y()both have the uiniqueness property. Bly (1). (2) immediately above, we have JY3(t)I

v1(Itl). where Itl designates the nornial form of t.

(4) 1 ct t be a p-termi which hats been extracted ('ror at proof' in arithmectic all of' whose

axiomis ire true. [hen there is an am'signnient of' types to the variables and constants of 'y3(t)
such that the resuilting typed A-calcuhmus lermi redli/es the cndformutla of thie proof' in the sense

of imodiftied reali/abi lity.

Thius, fromn the point of Niew ot execution as opposed to pruining, there is not mutch

diffren~ce between the teri extracted frorn a proof tiw inodilied icali/ability. and the p-term

which we extract fromn proofs.

(f)I fowever. -y, destroys the dependency inflormiation which is needed by prining. TIhe
* ~~problem is that in replacing "0[Aa~ti~t)ti)' by "it' wv (t,) then t2Ia .'7720tM else t31(T w2 t1)j',

one looses track of' ihe uise, it' any. %hich is made in t2 and t the assumiption represented
* by a

In what follows, we deiomistrate this point in at larmimal way by exhibiting a paiir of proot's

11 and 11' suich that (a) y3(yi ([I))= -y (y I(11)), and (h) pruning can be applied to [1, but not
to 11'. Thus the informnation~ which distinguishes between proofs which can be pruned and

those which cannot is lost by *Y3. A Jbr-liori, the dat needed to determine the vulcome of
pruning operations is not p esent in the ordinary A-terms produiced by y3.

2 104



In order to construct 11, [1'. we first need proofs 11:AVB. fl 2:A'VB, f!3:(0), f13':?MO).
1l4:o(0), 1ls:4(l) such that (a) A and A' are distinct, (b) y1(fi 1)=¥ 1(112) (c) the set of open
assumptions of 113 is fA'}, (d) the set of open assumptions of 13' is {A.A'}. (e) Y1(lI3) =

(y1 (fl 31a 4- ,8]) where a is the proof variable assigned to the assumption A, and P the
proof variable assigned to the assumption A', (0 the set of open assumptions of n!4 is {B, (g)
the set of open assumptions of 115 is 1B}. It is not difficult to construct proofs with these
properties. For example, we can take A=qpV(0=l), A'=qV(1=2) and (using the q-

notation explained in section 4.2).

I'I = "OE(fl 0 :4FVB '

OI(Ol(AS(qp),O = ),B),

OI(pV(O= 1).AS(B)))".

(12 = "OF1 0 :qVp1,
OI(OI(AS(q),I = 2),B),

Ol(q V(1 = 2),AS(B)))".

where F10 is any proof of 4pVB. Then, as desired, yi(11,) Y1 (-1 2) -

Ol'(aYt(1lo).() 1 (Ol1 (a)),OI 2(a)). By the requirement (e) above, 113 and 13' must be
identical in forin except that uses of the assumption A in [13' are replaced by uses of the
assumption A'in [13. This can be achieved by a trick similar to the one used for 111,112

above.

105



Now, we take

n1=

n2 n3 n'4
A'VB VO) #(0)

V E - F - n

41(0) #(1)nt  31- 31.

AVB 3xo(x) 3x,(x)
3x#(x)

11' is jUSt the same as ff. except that 113' appcars in the place of n3. ihe p-term notation
for 1 is:

t = OEa.tYl(0OE(lt1 ,t 3.taE)),l( ,15) )

where t1 =7 1([1)=y 1( 2), t3 =Y1(I13). t4 =7 1(Il 4), and t5 The(II5 ). Thc p-term notation
for 11' is

t'= Ol-(a~t,El(O.Ol:4fit t3',y),H(l I)

where 13 -=yl(-13 ). The only difference between t and t' is that i.=t Ia -PI. As a

consequence, t can be pruned to "l(0O'V(flttI.t4))", whereas t' cannot. I lowever. the
difference between t and t' is lost in the course of translation fromt the p-calculus into the X-

calculus: in passing from t3 to y3(t3) and from t3 t, y1(t3'), a and ig are replaced by the same
term, namely w2(y3(t,)). Specifically,

'itii Y3(t) = y3(t') =

if w l(Y3(t1)). then
' (0. if w(y 3(t1 )) then y(t)-w( 3(t)) else Y3(4 -((t))

else < ,Y3(t5)ia- ff(-fI(td))

As desired. this example demonstrates that pruning cannot be applied to the \-terms

extracted by the modified reali/ability interpretation. The same example wolks in the same

106[4,
[[ . .O..- q~m. .. .. ... .. dtipo w-



way for the recursive realizability interpretation. The only difference is that "if then else" and

the pairing operator are regarded as operators not on X-terms but on godel numbers of partial

recursive functions.

A.2 The l)ialectica interpretation

*lbe l)ialectica interpretation [Giidel 19581 extracts somewhat more information from a

proof than either the recursive realizability interpretation or the modified realizability
interpretation- consequently, it requires separate treatment. In part (a). we describe the map
Y, from p-terms to I)ialectica realizations, and in part (P). we show that pruning is not
applicable to the terms extracted by the l)ialectica interpretation.

(a) For each forimula A of arithmetic, the predicate "f l)ialectica interprets A" is
expressed by a formula Vxl)A(fx) in the theory of functionals of finite type over the natural
numhcrs, where DA is quantifier free. (In the standard treatmntLs of the l)ialectica
intcrpretation, the single universid variable x in Vxl)A(fx) is replaced by a vector of variables

x. I owever. it is convenient for our purposes to use a single universal variable which may

range over pairs.)

The di!Tcrence hetkecn the modified realiiability interpretation and the I)ialectica

interpretation may be summari/ed as tollos. In the modified realizability interpretation, a
functional %hich realizes a formula ADII is required to produce a realization for II whenever

it is mipplied with a reali/.tion of A. In the I)ialectica interpretation, a realization for ADII
must provide not only a way of getting from realizations of A to realizatiuns of It, but alo.,A,
roughly speaking, a way of getting from refutations of' I to refutation of A. Specifically, a
I)ialeclica reali/ation of ADII is a pair <X.Y) of finctionals such that

VFy. (lA)rYy ) l)1B(X(f),y))

holds. The Functional X takes reali/ations of A onto realizations of It, just as the

corresponding fictional for the modilicd rcali/ability interpretation does. The role of the

functional Y is this. Supposc that f is proposed as , realization for A but that. in actuality, f
I i~doe.s not rcAli/e A. Also sulppose that I I'tmctional y is given such that IIj(X(f),y) does ntoi

hold. Ihwn y constitttes a refittation o l' the proposition that X(f) is i realiation of It. What
Y does is to take the refulation y. and the functional f. and produce a functional Y(<f.y>)
%hich constitutes a refiutation of the pioposition that f is a realization of A.

In the delinition given below, it is convenient to write the reali/ation predicate D)A in the

107



P-i

form "Xf x.qp" , where p is a quantifier free formula; this allows us to explicitly indicate

occurences of the variables f,x which represent the argument, to the predicate. The definition
of DA by induction on the structure of A is as follows.

(1) Base case. For A atomic, D A= Xf x.A (where f and x are new variables not appearing

in A)

(2) DAAB = f x.(l)A(t (tO),(x))Al) 13(772(t),7 2(x)))

(3) 1 AVB = Xf x.((w(t=O D DA(N 2(0,.w(x))) A (w()=O D Dl(2(OW2(x))))

(4) l)3y.A Xft x.(DA(rz(0,X)[y+-1rz(O])

(5) DVy.A =f x.(i)A(f('l(X)).w2(x))[y4-1ri(x)])

(6) IADB = Af X. (D)A( 'rI(x),r2(f(x)) D l)B(,(0(,(X)),2(x))

Thc map Y3 for the l)ialcctica interpretation yields not one but several A-terms when
applied to a p-term t. Namely, it produces (1) a realization X, anu, (2) a term Ya for each
proof variable a which appears free in t. The term X is a I)ialectica realization for the

endformula of the proof FI from which t was extracted, while for each a, the term Ya
computes refutations (in the sense described earlier) of the open assumption of fn which
corresponds to the proof variable a. More precisely, if a I.... an are the proof variables for
assumptions A, . .An in a proo n with endformula C, then Ihe formula

Vai, . . . " n  X.

()A l'aY(x )) A 1)A2(a 2,Ya2(x)) . . . A IDA (an,Yan (x)) D I)c(X,x))

holds in the theory of functionals of finite type for some assignment of types to the variables

and constants of the Yai and of X. We will designate the realitation X which is extracted

from a term t by "X(t)". and the refutation maps Ya by "Ya(t)". Some of the clauses of

the inductive definition of the extraction map Y3 are as follows. The remaining clauses have a
similar character: the interested reader should have no trouble working them out for himself.

(1) Base case

X: a a;

Ya: a => Ax.x

X: # c [where c is a new constant symboll

108

1 *--1o8



(2) X: o1l,t) = <o,x(t)>

X: 01(2,t) = <l,X(t)>

Ya O1li,t) = A x.{(Ya(00t )1(qx)

Ya: 01(2,t) = Ax.{(Ya(t))(,2(x))W

(3) X:OE(a,t1,t2,t3)) == if iT,(X(t,)) then X(t2)[a-r72(X(tl))] else X(t3)[a+-7r2(X(t))]

Yp:OF(att.t2 ,t3 ) : if w1 (X(t,)) then Ax.(Y/(tI)(Ya(t 2)(x)) else Ax.(Yf8(ti)(Ya(t 3Xx))

(if P8 appears free in t; , a)

Ypl:OF~a~tjt 2 ,t3) = Y,8(t) (if P8 appears free in t2 ; ,8ia)

Y/3:OE(a,tlt2,t3) => Yfl(t3) (if P1 appears free in t 3; /3*a)

(if P3 appears free in more than one of t, t2, t3, then any of the applicable clauses

for Y may be used)

(4) X:Xa.t =:> <,Na.X(t),Xa x.Y ,a r(x))>

Yp:Xa.t =C Xx.(Y(0(w2(x))) (where ## a)

(5) X :EI(tt2h )  ==: <ttX(t2)>

. Ya:El(tlt 2) =: Ya(t2)

(P8) Now, to show that pruning is not applicable to the terms extracted by the Dialectica

interpretations, we only need to verify that the p-terms t and t' of the last section yield theI same term when given to 73- This is straight-forward, since, as we have seen, the Dialectica
interpretation and the modified realizability interpretation behave in the same way so long as

implication ("D") is not involved. In particular, we have,

X(t) = X(t') =

Sif v(X(tj)) then

(0, if 7rt(X(t1 )) then X(t 3)Lff-v 2 (X(tj))J else X(t 4)L4-v,(X(t,))]>

else <l,X(t)[a-1r2 (X(tt))I>

1091I__ _



Appendix B

Content and Form in Proof Manipulation - An Example

There is a sharp contrast between the uses which we have made of proof manipulation

methods and the aims for which those methods were originally devised. Namely,
normalization, and its predecessor, cut elimination, were developed as tools for use in the
mathematical analysis of proofs and provability, whereas we have used them here for the
execution and transfo~rmation of algorithmis. With this shift in aims comnes a change in tile

features of proof systems which aire significant. The purpose of this appendix is to illustrate
this change by means of an example. In particular, it will be shown in section B.I that the
complexity of the theorems which can be expressed and proved in a foral system - if you
like, the "power" or "inferential content" of the system - is not correlated with the complexity

of the computations which its proofs can describe. Thus a central feature of proof systems
from the point of view of' most of proof theory is demonstrably unrelated to the central
feature of proof systems for the purposes of computation. In section B.2, the analysis given in
section B.1 is extended to normalization with prunino. We begin with a brief discussion of
the aims lor which proof transformations were developed.

Most work in proof theory has addressed itself to questions which are fiornulated in tcrms

or provability and which do not make direct rettrcce to proofs themselves or to their
properties. Questions and results of this kind have a certain generality in that they are
independent of the details of how proofs are represented: the differences between the f-31iliar
proof systems (such as natural deduction, the calculus of sequents, "|lilbert-style" systems, and
so forth) are inmaterial trot the standpoint of provability - anything that can be proved from
givenl axioms in one system can also be proved in the others. lxamples of central notions itn
proof theory which refer only to provability are (1) tile consistency of a theory. (2) the relative

"power" of logical principlcs. ,and (3) the "proof theoretic strength" of a theory as measured
by its ordinal. Of course, tile study of' questions to do with provability often requires
investigation of the details of particular proof systems. Cut-elimination, tile ancestor of

normalization, was developed as part of just such an investigation: namely the investigation
which led (;entzen to his consistency proof for arithmetic from the principle of (quantifier
free) induction the ordinal t0"

w loever formal prools can also be studied ats mathem|atical objects whose properties are
of interest in their own right. For example, the strong normalization theorem fbr natral
deduction [lPrawitz 19091 (see chapter 3). and the theorems of [Mints 19771 about the
relationships between the " programs" extracted by the various realizability interpretations (see

appendix A) are of interest primarily for the theory of" proofs (a.s objects of tmrtheniatical

;,. 110

L,,S



study), and not so much for the theory of provability. These results have the common effect
of showing that the notion of the computation described by a proof is relatively stable under
changes of technical formulation. This should be compared to the stability under change of

formulation of the notion of a computable function; a stability which constitutes the evidence
for Church's thesis.

Kreiseltl%91, and Statman[1974] have emphasized that a shift in attention from the

theory of provability to the theory proofs leads to a change in tile selection of notions and

distinctions which are important. As we have said, this appendix is intended to make a
similar point in regard to another view of proofs - namely the view of proofs as computational

descriptions. The example to be given shortly illustrates the differences between the aims of
computation, and the aims of the /heory of provabilily. An example of tie conflict between
the aim of constructing a smooth theory of proofs, and the aim of making effective

computational use of proofs, has already been seen. Namely, it is essential for the purposes
of the stability results mentioned in the last paragraph that attention be restricted to
transformations which preserve the extensional meaning of proofs. On tile other hand, if one

wishes to maximize the computational efficiency of proofs by means of mechanical

translormations, then one must use transtbrmations - such as pruning - which change
extensional behavior: this was shown by the examples given in chapter 4. Thus the
selection of transfomiations which make for a smooth theory is different from the selection
which is best for practical applications. This kind of conflict between the aims of theory and

practice is of course common. In the one case general results are what is wanted, and in the
other useful techniques - techniques which may or may not have interesting general

properties, but which can be profitably applied by the use of human judgement.

1Il Norlmalization in successor arithmetic

We proceed now to the example. Let 'TS be the the theory which results front

restricting the formulation of arithmetic given in section 3.6 to the language which has

symbols for successor and predecessor as its only function symbols. Thus the f ormulas which

appear in proofs of Ts will contain (a) zero, (b) "predecessor" and "successor", and (c)
"equals" as their oiily constant, ftnction, and relation symbols, repectively. The lemmas

"hich may appear in proofs of Ts are those of the scheme INl)cp of induction, where q is a
.* fiiLull of the restricted language. From the point of view of tile set of provable theorems,

.is equivalent - modulo a simple transltion - to the usual formulation Of Successor

arithmetic. (Predecessor is included as a primitive function because it simplifies the recursive
proofl. of the induction lemmas). Thus what we have called the "inferential content" of 'Is

141



is exceedingly small. Indeed, from the point of view of the theory of provability, Ts is wholly

trivial; it has an elementary decision method by quantifier elimination and a finitist
consistency proof. Nonetheless, the computational content of TS, in the sense of the set of

finctions which are computed by proofs of V3 formulas, is just the same as that of full
arithmetic. This is shown by the following theorem.

Theorem: Let f be a function on the natural numbers which is definable in G6del's
system T of primitive recursive functionals of finite type [Gidel 19581. Then there is a proof
If in 'I's of Vx3y(x=y) such that normalization of If computes the function f.

Proof: We will show how to reverse Kreisel's modified realizability interpretation; a map
r from terms of the typed .-calculus to proofs of Ts will be described which has the property
that the modified realizability interpertation extracts t from r(t). The map makes use of the
correspondence between proofs and A-terms which was explained at the begining of chapter
3. The end-formula of the proof gotten from a functional f of type "0--0" will be
3x(x=x)D3x(x=x); this proof can be easily transformed into a proof of Vx3y(x=y) which,

in the natural sense, computes the same function. The theorem follows since normalization
and modified realizability yield the same computations. (See appendix A.)

First of all, we define a map 8 from types (of functionals) to formulas by induction on

the stnicturc of types. If r is a type, then S(T) will be the end-formula of proofs representing
functionals of type T'.

(1) Base case: 8: 0 = 3x(x=x)

(2) 8: r-=p , 8(-)D,(p).

The map F is dcfind by induction on the structure of tenns of the typed A-calculus. For
the base case we need to define "s behavior on variables and the constant zero. Let

V {x0,x1 x2 x3 . . .} be an enmeration of the variables of type r. Ten F assigns the proof:

S , [8(-)A(i= i)]

A I
S(T)-1

to the variable xi. The second conjunct "i=i" (where i is a numeral) serves to label the
assumption "8(T)A(i=i)" among all of' the other assumptions "8(r)A(j=j)" representing

, variables x* of type T. Next, IF assigns the proof

112



0=0

3x(x = x)

to the constant zero. The remaining clauses of the inductive defintion are as follows.

(1) succ(t) succ(x) =succ(x)
r(t) 31-

3x(x =x) 3x(x = x)

3x(x x)

(2) Axi.t =(t)

DI
(8(r)A(i = i)) D 8(") where r is the type of the term t

(3) t1(t2) r(t1) F(t2)

DE
S(p) where -p is the type of t ,

and r is the type of t2

(4) R(t1,t2) - eh types of t1,t2 will have the forms T and 0 -- (r -. T), respectively. Let F
be the formula S(T). Then the end-formula of F(t,) is F, and the end-formula of r(t 2) is
3x(x =x)D(F D F). The proof I'(R(t ,t2)) uses the induction principle applied to the formula
,)(x) = "(x=x)AF". It will be convenient to use de simpler of the two formulations of

A induction for q given in section 3.4, namely, the recursivc proof:

S ,#

, o1 113

J - - "- -. - .-. - .• iI[ I

*1.



P Vx 4()
VRP

Ix#01 9,(prcd x) Vx(x*0 A qp(pred x) D 4p(x))
1 Al VF-

Vxy(x=yVx~ty) [x =01 q)(O) x*0 A9,(prcd x) x*0 Aq9 (prcd x) D 9,(x)

x=0 V x*0 9)(X) 4P(x)
VE

VI_
Vxqp(x)

We take nl, in tile above to be:

r(t1)
0=0 F:

Al-__
(0=0)AF

and n'2 is,

Ix-A0 A ((prcd(x)=pred(x)) A F)] p red(x) p red(x)
*AF 31 r(t 2)

(prcd(x)=prcd(x)) A F 3x(x x) 3x(x x) D (F D F')

F F D F

A I,

(x =x) A F
D-

x t-0 A (pred~x) =prcd(x) A F) D ((x x) A F)

VI-
Vx.(x#0 A (prcd(x)=pred(x) A F) D ((xz-x) A I9

114



This completes the inductive definition of r. It is a routine matter to check that

y(r(t)) - t

where y is the modified rcalizability interpretation as described in appendix A, and where "~"

represents interconvertability in the A-calculus. Thus for each function f of type 0--0 which

is definable in G6dcl's system T, there is a proof 17 of 3x(x=x) D 3x(x =x), such that, for all
numerals n, the result of normalizing

n=n

31 n1
3x(x-x) 3x(x=x) D 3x(x =x)

3x(x=x)

has the form

no
m=m

31-M=
3x(x =x)

where m is the numeral for Rn). In order to get a proof [1' of a formula of the form

Vx3y(y=y) which computes f, simply take

UI' =

4 X=x
31-- nl
3y(y y) 3y(y y) D 3y(y y)

S' 3 y(y=y)

• "i Vx.':y(y =y)

This completes the proof of the theorem.

9 The theoren shows that the proofs of successor arithmetic, despite their limited inferential

content, arc just as compuitationally expressive as those of fuil arithmetic. The general reason
for this is evident - namely, the behavior of normalization depends chiefly on the structure of

,1 ,the applications of induction principles in a proof, and is insensitive to the mathematical

i l>. 115

Li __



content of the formulas to which induction is applied; this is a sense in which normalization

depends on the form rather than the conlen of proofs.

As an alternative way of expressing the significance of the theorem, one might say that it

demonstrates that nornalization is a very bad method for treatment of successor arithmetic

proofs. There are after all computation procedures for proofs in this theory which arc more

efficient in the general case than normalization. For example, since all predicates definabl"
in successor arithmetic are decidable, one can take a proof of Vx~ytp(x,y) and an input n

and produce an output in with qo(n,m) by simple linear search: q)(n,0), (P(nl). 4(n,2) ... are

tested in turn until a number with the desired property is found. In this case, the proof serves

only as a guarantee that the search process will terminate. 'hus it may happen that the best

compuntational results in proof manipulation are gotten by making use not just of the form of

proofs in tie way that normalization does, but also of the matheratical content of the

formulas which appear in proofs. (We have already seen an example of this; in chapter 4, the

mathen-,tical content of the bin-packing proofs was used in the simplex transformations.)

Successor arithmetic is an extreme case, since one does quite well by ignoring the proof

altogether except in its role as evidence for the truth its end-torilula.I
11.2 Pruning in successor arithmetic

In the last section we were concerned with nornalization w itlhout pruning. The question

which we address in this section is: how does the addition of pruning to the set of reduction

rules used in normali,;tion affect its behavior in the context of successor arithmetic?

Certainly. pnning can make a large difference in the computational effliciency of oome proofs.

In particular, each application of' induction in proofs produced by the mal I' of the last

section constitutes a redundancy of the kind that pruning removes: in order to verity this, the

reader need only note that pruning, is directly applicable to tle normIal form of IP for any 9).

As a consequence, pruning in this case reduces the complexity of the functions computed by

proofs in a drastic way: the functions computed by pruned proofs are describable by use of

conditional expressions and the successor function alone.

I lowevcr. it is possible to modify the proots produced by r in such a way that pruning is

lo lonmger of any use. It follows (iat pruning does not reduce the COmLpultational complexity

of successor arithmetic prools in the general case. Tlo start with, consider the clause

116

4 ___ .1 _



(I) succ(t) succ(x)=succ(x)

r(t) 31
3x.(x = x) 3x.(x = x)

3E

3x.(x = x)

in the inductive definition of r. Now, since the assumption "x=x" is not used in die second
premise of the above proof, the pruning rule for 3-climination given in section 2.7 is
applicable. However, we may take F'(succ(t)) to be

Sx=x ] succ(x) = succ(x)
SIl-

succ(x) = succ(x)

f'(t) 31

3x.(x = x) 3x.(x = x)
3E-

3x.(x = x)

instead, and in this case pruning is not applicable. By thc same kind of trickery, it is possible

to modify P-q) in such a way that pruning is no longer of any use. We will show how this is
done in a moment, but first we wish to draw some general conclusions about pruning.

The use which is made of the assumption "x=x" in the proof above is inessential.

Further, the fact that it is inessential would be immediately recognized by any person who

inspected the proof. (For that matter, any per'son would recogni/e with equal ease that
"3x.(x =x) D 3x.(x =x)" is a true formula, and consequently perceive the uselessness of the

elaborate proofs generated by r.) it follows that anl analysis of dependencies which is routine
for a person may of may not lie within the powers of the formal pruning operations with
which we have been concerned. The pruning operations are very sensitive to the formal

details of the proofs to which they are applied; two proofs which appear to he essentially
-identical to a persn may nonetheless behav e ry di llrently under pruning. Nor is pruning

in any sense universal among formal operations for the removal of redundant parts of proofs.
* One can invent a variety of mechanical translormations on proofs which remove redundancies

of one kind or another, hut which are useful in circumstances where pruning fails. To takeI just one example, consider the following operait:1 on proofs of arithmetic:

1' !17

• 1K Z2 i--- _ _

.,_-' --- : m mp~s ,,.1...



nl iIx -0]
3yq) 3yip

VI VI-

Vx~yqp Vx~yq)

where the condition for the operation is that x not a.r-pear free in qJ. T7his operation, which in

a certain weak sense is sensitive to the content of proofs, is effective in reducing the

computational complexity of the proofs produced by the new version of the map r which we

are Currently constructing - a map which produces proofs to which pruning is not applicable.

Now, in order to complete the definition of the new version of r. we need to modify the

proof F12 which appears as part of the proof Pp given in clause (4) of thle delinition of r.
The proof H' appears as part of the proof Of the third premise of an V-eliminiation inference

whose first premiise reads "x =0 V x#0". llowever. in the normal form of 13q) no use is

miade of the assumption "x 0" in the proof of the third premise. The reason for this is that

no use is made of "x ;O" in establishing the formula *(X x)AF" in 112. H owever, in the
following slightly modified version of 112, "x 0" is used, anid consequently prunling is no
longer applicable toPp.

[x 0O A ((pred(x)=prcd(x)) A F)] pred(x) =prcd(x)

A :31-- 1't 2)
(pre'd(x)=pred(x)) A F 3x(x x) 3 x(x x) D (F D F)

AP - DE

F F: D F

113 D I

(x -x) A F
Dl- A-_ _ _ _ _ _

x*O A(1)red(x) =p red(x) A F) D ((x x) A F)

Vx.(x O- A (prcd(x)-=lprcd(x) A F) D ((x=x) A F))

where n1, is

e118

I~ ALA



[x *OA((pred(x) = prcd(x))AF)J
AE

(pred(x) = pred(x))AF
114 A -

X~O prcd(x) =prcd(x)
r14 A!

x*O x* OA (prcd(x) = pred(x)) Vx y(x*OAy*eOApred(x) =prcd(y)ix= y
Al Y

x*OAx*OA(pred(x) =pred(x)) x*OAx*OA(pred(x) =prcd(x))Dx= x

X=x

and Finally, where t14 is

Ix*OA((prcd(x)=prcd(x))AF)J
AE

x=O

i1l9
I L'



Bibliography

Aho, A.V. and Ullman, J.D.[19731, The theory of parsing, translation, and compiling.
volume 2, Prentice-Hall, London, pp. 924-925

Barendregt, H.P. [19721 Pairing without conventional restraints, (preprint)

Bates, J.L. [19791 A logic for correct program development, Ph.D. 'lliesis, Dept. of Computer
Science, Cornell University, August 1979

BeckcmanL., Haraldsson, A., Oskarsson,O., and Sandewall, E.[1976], A partial evaluator and
its use as a programming tool, Artificial Intelligence Journal 7 pp. 319-357

Bishop, E.119701, Mathematics as a numerical language, Intuitionism and proof theory,
Proceedings of the summer conference at Buffalo N.Y., 1968, A. Kino, J. Myhill, R.E. Vesley
eds., North Holland, Amsterdam pp 53-71

Borning, A.11979], ThingLab - a constraint oriented simulation laboratory, Ph.D. Thesis,
Stanford University Computer Science Department, Technical Report Stan-CS-79-746

de Brujin, N. G.[19701, The mathematical language AUTOMATH, its usage, atl some of its

extensions, L.ecture Notes in Mathematics, vol. 125, Springer Vcrlag, pp. 29-61

Church, A. [19411, The calculi of lambda-conversion, Ann. of Math. Studies 6, Princeton, N.J.

Clark, K., and Sickel, S.119771, Predicate logic: a calculus for deriving programs, Proc. of Fifth
Internacional Joint Cont'erence on Artificial lttelleigence pp. 419-420

Constable, R.1 .[ 19711, Constructive mathematics atd automatic program writers, IFIP Congress
1971

van l)alen, 1).[1973], lectures on intuitionism, I.ecture Notes in Mathematics, vol. 337,
Springer Verlag, pp. 1-94

)illcr, J.[19791 I'unctional interpretations of teyling's arithmetic in allfinite t)'1e.' Nieuw Arch.
Wiskunde, IlI. Ser. 27, pp. 70-97

lDoyle, J.119781, Truth maintenance systems for problemt solving, M.I.T. Al lab technical report
AI-TR-419, January 1978

Ershov A.P.[19771, On the essense of compilation, IFIP Working Conference on Formal
l)escription of Programming Concepts, Saint Andrews, New Brunswick, vol I., pp. 1.1-1.28

I Garey, M.R. and Johnson, ).S.119791, Computers and intractability, a guide to the theory of
NP-coniplctcness, W.11. Freeman, San Francisco, pp. 124-127

'Gentzen, G.[19691, The collected papers of Gerhard Gentzen, (M.F. Szabo ed.), North-Holland,
Amsterdam

* Godel, K.[19581, Ueber cine bisher noch nicht benutzte Irweitcrung des finiten Standpunktes,
Dialectica 12, pp. 280-287

120



Goto S.. 119791, Program Synthesis front Natural Deduction Proofs, International Joint
Coniference on Artificial Intelligence, T1okyo

Green, C.C,I 19691, Application of theorem proving to problem solving, Proceedings of the
International Joint Conference on Artificial Intelligence, Washington DC. pp 219-239

Harrop, R. (19601. Concerning formulas of the type 4- AV 8, A-.3x8(x) in intuitionislic
formal systems, Journal of Symbolic Lo~gic. vol. 25. pp. 27-32

Helwitt, C.1'19711, Procedural embedding of knowledge in planner, Proceedings of the
* International Joint Conifcrcncc on Artificial Intelligcnce. London

Howard, W.A.[1980J. The formulae-as-types notion of construction, in Fesischri/? on the
occasion of H. 8. Curry's 80th birthday, to appear

Katz, S.[19781, lProgramn optimnization using invariants, lEFE1 Trans. Software Frnginering Vol.
4, No. 5. Sept. 1978, pp. 378-389

Klentc S.C.I 19451, On the interpretation of intuilionistic umber theor. Journal of Symbolic
Logic 10. pp. 109-124

Kowalski, It. 119741, Predicate logic as a prograniohing language, Proc. of the IFIP Congress
1974, pp 569-574

K ri-6c, GJ19581, T'he nondlerivability of -(kX)A(x)-3x(x). A4 primitive recursive in
ifltionistic finrmal systeins (abstract), Journal of Symbolic Losgic, vol. 23, pp. 456-457

K reisel, G .1 19591, Interprcition of analYsis by Pneansv of (wiiistruclive' fUincIUonaIs of finite type, in
(onsinicivity in Mathemnatics, North-Holland, Amsterdam, pp. 101-128

Kreisel, G.119691. 4 survey of proyof theory 11.. in: Proc. Second Scandinivian Logic
Symposium, North-Holland, Amsterdam, pp. 109-170

9 ,. London, 11.1:.119781, D~ependenicy networks as a represcntation for inohleimig in general problem
solvers. P1h.l. thecsis. U Maryland lIcpartnicnt of Computer Sciencc Technical Report 698

Manna,Z, and Waldinger. 11.f19791, A deductive approach to progrwny synthesis, FourthI Workshop on Automatic Decduction, Austin Texas, pp 129-139
Martin-I .61' P. 119791, C'onstructive ,maiheniatics and computer programmning. presented at the
Sixth International Congress for logic, Methodology and Philosophy of Scicnce. Hannover,I ~i August 1979
McCarthy, J., et a1119621, L~isp 1.5 progranmer's mnanual, M.l.Tl. Press, 1962

McCarthy. J. and I layes. 11.119691, Som~e philosophical ,problcmis from the standpoint of artificial
iniefigre. Machine Intelligence 4, American Flsevier, N.Y.

Miglioli. P3., and Ornagbi, M.119801, A logically justified computing model, 1Fundamenta
Inforinaticac, to appear

Mints, G.I'.119771, E theoremns; J. Soviet Mathemafics 8, pp. 323-329

121



Oppen, D.C.[1979], Pretty Printing. Stanford Computer Science Department Report

Stan-CS-79-770

Prawitz, D.[19651, Natural deduction, Almquist and Wksell, Stockholn,

Prawitz, D.[1969). Ideas and results in proof theory, in: Proc. Second Scandinavian ILogic
Symposium, North-Holland, Amsterdam, pp. 235-307

Scott, D.[19701, Constructive Validity, ILecture Notes in Mathematics, vol. 125, Springer
Verlag, pp. 237-275

Shortliffc, E.II.[1974], M YCIN, a rule-based computer program for advising physicians regarding
antimicrobial therapy selection, Ph.D. Thesis, Computer Science Dept., Stanford University, in
Computer-based medical consultations: MYCIN, New York: American Elsevier, 1976

Shrobe, H.E.,119791. Dependency directed reasoning for complex program understanding Ph.D.
Thesis. )epartment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Report TR-503

Stallman, R. and Sussman, 0. J. [1977, Forward reasoning and dependency directed bactracking
in a sy ,em for computer-aided circuit analysis, Artificial Intelligence Journal, Oct. 1977

Statman. R.[19741. Structural complexity of proofs, Ph.D. Thesis, Department of Philosophy,
Stanford University

Statman. R.(19771, The typed X-calculus is not elementary recursive, 18th Annual Symposium
on Foundations or Computer Science pp. 90-94

Siissman G.J.. and Steele, G.L., [19751. SCllEME. an interpreter for extended lambda calculus,
MIT Al Mcmo 349

l'akasu S.[19781. Proofs and programs, Proceedings of the Third IBM Symposium on the
Nlathematical Fotundations of Computer Science - Mathematical Logic and Computer Science,
Kansai

Trolstra A.S.119731, Iuitilionislic formal systems, in A etamathematical Investigation of
litb, itioni.stic 'ut/ushutic and Inalysis, A.S. Troelstra, ed., I ecture Notes in Mathematics vol.
344. Springer Verlag, pp. 1-96

lrocl.tra A.S.I 19731, Normalization theorens for systems of natural deduction, in:
,Ahtamatheawical Investigation of' Intuitionistic Arithmetic and Analysis, A.S. Troclstra, ed.,
Lecture Notes in Mathematics vol. 344, Springer Verlag, pp. 1-96
Wcyhritch, R.W. and lomas, A.J.119741. I"OI1: a proof checker for first-order logic. Stanford
Artificial Intelligence ILaboratory Memo AIM-235

€ , 122


